Advertisement

Pharmaceutical Research

, Volume 30, Issue 10, pp 2485–2498 | Cite as

Targeted Delivery of Nano-Therapeutics for Major Disorders of the Central Nervous System

  • Huile Gao
  • Zhiqing Pang
  • Xinguo JiangEmail author
Expert Review

ABSTRACT

Major central nervous system (CNS) disorders, including brain tumors, Alzheimer’s disease, Parkinson’s disease, and stroke, are significant threats to human health. Although impressive advances in the treatment of CNS disorders have been made during the past few decades, the success rates are still moderate if not poor. The blood–brain barrier (BBB) hampers the access of systemically administered drugs to the brain. The development of nanotechnology provides powerful tools to deliver therapeutics to target sites. Anchoring them with specific ligands can endow the nano-therapeutics with the appropriate properties to circumvent the BBB. In this review, the potential nanotechnology-based targeted drug delivery strategies for different CNS disorders are described. The limitations and future directions of brain-targeted delivery systems are also discussed.

KEY WORDS

brain tumor central nervous system cerebrovascular disease neurodegenerative disorder targeted delivery 

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Basic Research Program of China (973 Program, 2013CB932502), National Science and Technology Major Project (2012ZX09304004) and National Natural Science Foundation of China (81001404).

REFERENCES

  1. 1.
    Wohlfart S, Gelperinaand S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release. 2012;161:264–73.Google Scholar
  2. 2.
    Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004;104:29–45.PubMedCrossRefGoogle Scholar
  3. 3.
    Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P. Delivery of peptide and protein drugs over the blood–brain barrier. Prog Neurobiol. 2009;87:212–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Pardridge WM. CNS drug design based on principles of blood–brain barrier transport. J Neurochem. 1998;70:1781–92.PubMedCrossRefGoogle Scholar
  5. 5.
    Pardridge WM. Drug targeting to the brain. Pharm Res. 2007;24:1733–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Guo L, Renand J, Jiang X. Perspectives on brain-targeting drug delivery systems. Curr Pharm Biotechnol. 2012;13:2310–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Srikanthand M, Kessler JA. Nanotechnology-novel therapeutics for CNS disorders. Nat Rev Neurol. 2012;8:307–18.CrossRefGoogle Scholar
  8. 8.
    Liuand Y, Lu W. Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv. 2012;9:671–86.CrossRefGoogle Scholar
  9. 9.
    Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY. Primary brain tumours in adults. Lancet. 2012;379:1984–96.PubMedCrossRefGoogle Scholar
  10. 10.
    Allhenn D, Boushehriand MA, Lamprecht A. Drug delivery strategies for the treatment of malignant gliomas. Int J Pharm. 2012;436:299–310.PubMedCrossRefGoogle Scholar
  11. 11.
    Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist WF. Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev Mol Med. 2011;13:e17.PubMedCrossRefGoogle Scholar
  12. 12.
    Bidrosand DS, Vogelbaum MA. Novel drug delivery strategies in neuro-oncology. Neurotherapeutics. 2009;6:539–46.CrossRefGoogle Scholar
  13. 13.
    Clarke J, Butowskiand N, Chang S. Recent advances in therapy for glioblastoma. Arch Neurol. 2010;67:279–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K. The disturbed blood–brain barrier in human glioblastoma. Mol Aspects Med. 2012;33:579–89.PubMedCrossRefGoogle Scholar
  15. 15.
    Agarwal S, Manchanda P, Vogelbaum MA, Ohlfest JR, Elmquist WF. Function of the blood–brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma. Drug Metab Dispos. 2013;41:33–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Bronger H, Konig J, Kopplow K, Steiner HH, Ahmadi R, Herold-Mende C, et al. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res. 2005;65:11419–28.PubMedCrossRefGoogle Scholar
  17. 17.
    Groothuis DR. The blood–brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol. 2000;2:45–59.PubMedGoogle Scholar
  18. 18.
    Roberts WG, Delaat J, Nagane M, Huang S, Cavenee WK, Palade GE. Host microvasculature influence on tumor vascular morphology and endothelial gene expression. Am J Pathol. 1998;153:1239–48.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhanand C, Lu W. The blood–brain/tumor barriers: challenges and chances for malignant gliomas targeted drug delivery. Curr Pharm Biotechnol. 2012;13:2380–7.CrossRefGoogle Scholar
  20. 20.
    Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95:4607–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Sarin H, Kanevsky AS, Wu H, Sousa AA, Wilson CM, Aronova MA, et al. Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. J Transl Med. 2009;7:51.PubMedCrossRefGoogle Scholar
  22. 22.
    Sarin H, Kanevsky AS, Wu H, Brimacombe KR, Fung SH, Sousa AA, et al. Effective transvascular delivery of nanoparticles across the blood–brain tumor barrier into malignant glioma cells. J Transl Med. 2008;6:80.PubMedCrossRefGoogle Scholar
  23. 23.
    Mohri M, Nittaand H, Yamashita J. Expression of multidrug resistance-associated protein (MRP) in human gliomas. J Neurooncol. 2000;49:105–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Fattori S, Becherini F, Cianfriglia M, Parenti G, Romanini A, Castagna M. Human brain tumors: multidrug-resistance P-glycoprotein expression in tumor cells and intratumoral capillary endothelial cells. Virchows Arch. 2007;451:81–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J, et al. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res. 2012;29:770–81.PubMedCrossRefGoogle Scholar
  26. 26.
    Pang Z, Gao H, Yu Y, Guo L, Chen J, Pan S, et al. Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with Doxorubicin. Bioconjug Chem. 2011;22:1171–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Pang Z, Lu W, Gao H, Hu K, Chen J, Zhang C, et al. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release. 2008;128:120–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhan C, Li B, Hu L, Wei X, Feng L, Fu W, et al. Micelle-based brain-targeted drug delivery enabled by a nicotine acetylcholine receptor ligand. Angew Chem Int Ed Engl. 2011;50:5482–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Gaillard PJ, Visser CC, Appeldoorn CCM, Rip J. Enhanced brain drug delivery: safely crossing the blood–brain barrier. Drug Discov Today Technol. 2012;9:e155–60.CrossRefGoogle Scholar
  30. 30.
    Lu W, Wan J, Zhang Q, She Z, Jiang X. Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer. 2007;120:420–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Lu W, Sun Q, Wan J, She Z, Jiang XG. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 2006;66:11878–87.PubMedCrossRefGoogle Scholar
  32. 32.
    Gao H, Pang Z, Pan S, Cao S, Yang Z, Chen C, et al. Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Arch Pharm Res. 2012;35:333–41.CrossRefGoogle Scholar
  33. 33.
    Hovanessian AG, Soundaramourty C, El KD, Nondier I, Svab J, Krust B. Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS One. 2010;5:e15787.PubMedCrossRefGoogle Scholar
  34. 34.
    Maletinska L, Blakely EA, Bjornstad KA, Deen DF, Knoff LJ, Forte TM. Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein. Cancer Res. 2000;60:2300–3.PubMedGoogle Scholar
  35. 35.
    Zhang YF, Wang JC, Bian DY, Zhang X, Zhang Q. Targeted delivery of RGD-modified liposomes encapsulating both combretastatin A-4 and doxorubicin for tumor therapy: in vitro and in vivo studies. Eur J Pharm Biopharm. 2010;74:467–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Huang R, Ke W, Han L, Li J, Liu S, Jiang C. Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration. Biomaterials. 2011;32:2399–406.PubMedCrossRefGoogle Scholar
  37. 37.
    Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res. 2005;65:11631–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Iresonand CR, Kelland LR. Discovery and development of anticancer aptamers. Mol Cancer Ther. 2006;5:2957–62.CrossRefGoogle Scholar
  39. 39.
    Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 2011;32:8010–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Gao H, Qian J, Yang Z, Pang Z, Xi Z, Cao S, et al. Whole-cell SELEX aptamer-functionalised poly(ethyleneglycol)-poly(epsilon-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials. 2012;33:6264–72.PubMedCrossRefGoogle Scholar
  41. 41.
    Gu G, Xia H, Hu Q, Liu Z, Jiang M, Kang T, et al. PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials. 2013;34:196–208.PubMedCrossRefGoogle Scholar
  42. 42.
    Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci U S A. 2004;101:17867–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Kuai R, Yuan W, Li W, Qin Y, Tang J, Yuan M, et al. Targeted delivery of cargoes into a murine solid tumor by a cell-penetrating peptide and cleavable poly(ethylene glycol) comodified liposomal delivery system via systemic administration. Mol Pharm. 2011;8:2151–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Kuai R, Yuan W, Qin Y, Chen H, Tang J, Yuan M, et al. Efficient delivery of payload into tumor cells in a controlled manner by TAT and thiolytic cleavable PEG co-modified liposomes. Mol Pharm. 2010;7:1816–26.Google Scholar
  45. 45.
    Sawant RM, Hurley JP, Salmaso S, Kale A, Tolcheva E, Levchenko TS, et al. “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem. 2006;17:943–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Xu H, Deng Y, Chen D, Hong W, Lu Y, Dong X. Esterase-catalyzed dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. J Control Release. 2008;130:238–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Guo L, Fan L, Pang Z, Ren J, Ren Y, Li J, et al. TRAIL and doxorubicin combination enhances anti-glioblastoma effect based on passive tumor targeting of liposomes. J Control Release. 2011;154:93–102.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhan C, Wei X, Qian J, Feng L, Zhu J, Lu W. Co-delivery of TRAIL gene enhances the anti-glioblastoma effect of paclitaxel in vitro and in vivo. J Control Release. 2012;160:630–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Schottelius M, Laufer B, Kessler H, Wester HJ. Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res. 2009;42:969–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Sun X, Pang Z, Ye H, Qiu B, Guo L, Li J, et al. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials. 2012;33:916–24.PubMedGoogle Scholar
  51. 51.
    Li J, Feng L, Fan L, Zha Y, Guo L, Zhang Q, et al. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials. 2011;32:4943–50.PubMedCrossRefGoogle Scholar
  52. 52.
    Gao H, Qian J, Cao S, Yang Z, Pang Z, Pan S, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials. 2012;33:5115–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Xu Q, Liu Y, Su S, Li W, Chen C, Wu Y. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles. Biomaterials. 2012;33:1627–39.PubMedCrossRefGoogle Scholar
  54. 54.
    Li Y, He H, Jia X, Lu WL, Lou J, Wei Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33:3899–908.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang P, Hu L, Yin Q, Feng L, Li Y. Transferrin-modified c[RGDfK]-paclitaxel loaded hybrid micelle for sequential blood–brain barrier penetration and glioma targeting therapy. Mol Pharm. 2012;9:1590–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Nie Y, Schaffert D, Rodl W, Ogris M, Wagner E, Gunther M. Dual-targeted polyplexes: one step towards a synthetic virus for cancer gene therapy. J Control Release. 2011;152:127–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Ying X, Wen H, Lu WL, Du J, Guo J, Tian W, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010;141:183–92.PubMedCrossRefGoogle Scholar
  58. 58.
    He H, Li Y, Jia XR, Du J, Ying X, Lu WL, et al. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials. 2011;32:478–87.PubMedCrossRefGoogle Scholar
  59. 59.
    Du J, Lu WL, Ying X, Liu Y, Du P, Tian W, et al. Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood–brain barrier and survival of brain tumor-bearing animals. Mol Pharm. 2009;6:905–17.PubMedCrossRefGoogle Scholar
  60. 60.
    Kakimoto S, Moriyama T, Tanabe T, Shinkai S, Nagasaki T. Dual-ligand effect of transferrin and transforming growth factor alpha on polyethyleneimine-mediated gene delivery. J Control Release. 2007;120:242–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Ito S, Ohtsukiand S, Terasaki T. Functional characterization of the brain-to-blood efflux clearance of human amyloid-beta peptide (1–40) across the rat blood–brain barrier. Neurosci Res. 2006;56:246–52.PubMedCrossRefGoogle Scholar
  62. 62.
    Liand H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22:225–50.CrossRefGoogle Scholar
  63. 63.
    Demeule M, Regina A, Che C, Poirier J, Nguyen T, Gabathuler R, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther. 2008;324:1064–72.PubMedCrossRefGoogle Scholar
  64. 64.
    Ke W, Shao K, Huang R, Han L, Liu Y, Li J, et al. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials. 2009;30:6976–85.PubMedCrossRefGoogle Scholar
  65. 65.
    Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33:8167–76.Google Scholar
  66. 66.
    Re F, Gregoriand M, Masserini M. Nanotechnology for neurodegenerative disorders. Nanomedicine. 2012;8 Suppl 1:S51–8.PubMedGoogle Scholar
  67. 67.
    Tanifum EA, Dasgupta I, Srivastava M, Bhavane RC, Sun L, Berridge J, et al. Intravenous delivery of targeted liposomes to amyloid-beta pathology in APP/PSEN1 transgenic mice. PLoS One. 2012;7:e48515.PubMedCrossRefGoogle Scholar
  68. 68.
    Tanziand RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55.CrossRefGoogle Scholar
  69. 69.
    Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005;309:476–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Brendza RP, Bacskai BJ, Cirrito JR, Simmons KA, Skoch JM, Klunk WE, et al. Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice. J Clin Invest. 2005;115:428–33.PubMedGoogle Scholar
  71. 71.
    Zhou QH, Fu A, Boado RJ, Hui EK, Lu JZ, Pardridge WM. Receptor-mediated abeta amyloid antibody targeting to Alzheimer’s disease mouse brain. Mol Pharm. 2011;8:280–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Chauhan NB, Davisand F, Xiao C. Wheat germ agglutinin enhanced cerebral uptake of anti-Abeta antibody after intranasal administration in 5XFAD mice. Vaccine. 2011;29:7631–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res. 2004;75:742–50.PubMedCrossRefGoogle Scholar
  74. 74.
    Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280:5892–901.PubMedCrossRefGoogle Scholar
  75. 75.
    Mourtas S, Canovi M, Zona C, Aurilia D, Niarakis A, La Ferla B, et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-beta1-42 peptide. Biomaterials. 2011;32:1635–45.PubMedCrossRefGoogle Scholar
  76. 76.
    Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One. 2012;7:e32616.PubMedCrossRefGoogle Scholar
  77. 77.
    Taylor M, Moore S, Mourtas S, Niarakis A, Re F, Zona C, et al. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Abeta peptide. Nanomedicine. 2011;7:541–50.PubMedCrossRefGoogle Scholar
  78. 78.
    Mulik RS, Monkkonen J, Juvonen RO, Mahadik KR, Paradkar AR. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol Pharm. 2010;7:815–25.PubMedCrossRefGoogle Scholar
  79. 79.
    Liu JK, Teng Q, Garrity-Moses M, Federici T, Tanase D, Imperiale MJ, et al. A novel peptide defined through phage display for therapeutic protein and vector neuronal targeting. Neurobiol Dis. 2005;19:407–18.PubMedCrossRefGoogle Scholar
  80. 80.
    Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu LP, Moghimi SM, et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine. 2011;7:521–40.PubMedCrossRefGoogle Scholar
  81. 81.
    Cui Z, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, et al. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm. 2005;59:263–72.PubMedCrossRefGoogle Scholar
  82. 82.
    Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6:427–41.PubMedCrossRefGoogle Scholar
  83. 83.
    Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001;47:65–81.PubMedCrossRefGoogle Scholar
  84. 84.
    Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res. 2008;1200:159–68.PubMedCrossRefGoogle Scholar
  85. 85.
    Joshi SA, Chavhanand SS, Sawant KK. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm. 2010;76:189–99.PubMedCrossRefGoogle Scholar
  86. 86.
    Mamiyaand T, Ukai M. [Gly(14)]-Humanin improved the learning and memory impairment induced by scopolamine in vivo. Br J Pharmacol. 2001;134:1597–9.CrossRefGoogle Scholar
  87. 87.
    Yu Y, Pang Z, Lu W, Yin Q, Gao H, Jiang X. Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery. Pharm Res. 2012;29:83–96.PubMedCrossRefGoogle Scholar
  88. 88.
    Li J, Zhang C, Li J, Fan L, Jiang X, Chen J, et al. Brain delivery of NAP with PEG-PLGA nanoparticles modified with phage display peptides. Pharm Res. 2013;30:1813–23.Google Scholar
  89. 89.
    Mishima K, Tsukikawa H, Miura I, Inada K, Abe K, Matsumoto Y, et al. Ameliorative effect of NC-1900, a new AVP4-9 analog, through vasopressin V1A receptor on scopolamine-induced impairments of spatial memory in the eight-arm radial maze. Neuropharmacology. 2003;44:541–52.PubMedCrossRefGoogle Scholar
  90. 90.
    Wu H, Huand K, Jiang X. From nose to brain: understanding transport capacity and transport rate of drugs. Expert Opin Drug Deliv. 2008;5:1159–68.PubMedCrossRefGoogle Scholar
  91. 91.
    Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release. 2007;121:156–67.PubMedCrossRefGoogle Scholar
  92. 92.
    Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, et al. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 2006;27:3482–90.PubMedCrossRefGoogle Scholar
  93. 93.
    Li J, Wu H, Hong J, Xu X, Yang H, Wu B, et al. Odorranalectin is a small peptide lectin with potential for drug delivery and targeting. PLoS One. 2008;3:e2381.PubMedCrossRefGoogle Scholar
  94. 94.
    Wu H, Li J, Zhang Q, Yan X, Guo L, Gao X, et al. A novel small Odorranalectin-bearing cubosomes: preparation, brain delivery and pharmacodynamic study on amyloid-beta(2)(5)(−)(3)(5)-treated rats following intranasal administration. Eur J Pharm Biopharm. 2012;80:368–78.PubMedCrossRefGoogle Scholar
  95. 95.
    Denyerand R, Douglas MR. Gene therapy for Parkinson’s disease. Parkinsons Dis. 2012;2012:757305.Google Scholar
  96. 96.
    Macpheeand GJ, Carson A. Impulse control disorders in Parkinson disease: is cognitive-behavioral therapy worth a wager? Neurology. 2013;80:782–3.CrossRefGoogle Scholar
  97. 97.
    Reddy P, Martinez-Martin P, Rizos A, Martin A, Faye GC, Forgacs I, et al. Intrajejunal levodopa versus conventional therapy in Parkinson disease: motor and nonmotor effects. Clin Neuropharmacol. 2012;35:205–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Soler R, Fullhase C, Hanson A, Campeau L, Santos C, Andersson KE. Stem cell therapy ameliorates bladder dysfunction in an animal model of Parkinson disease. J Urol. 2012;187:1491–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Alonso-Frech F, Sanahujaand JJ, Rodriguez AM. Exercise and physical therapy in early management of Parkinson disease. Neurologist. 2011;17:S47–53.PubMedCrossRefGoogle Scholar
  100. 100.
    Ronand D, Janak PH. GDNF and addiction. Rev Neurosci. 2005;16:277–85.Google Scholar
  101. 101.
    Zhou QH, Boado RJ, Lu JZ, Hui EK, Pardridge WM. Monoclonal antibody-glial-derived neurotrophic factor fusion protein penetrates the blood–brain barrier in the mouse. Drug Metab Dispos. 2010;38:566–72.PubMedCrossRefGoogle Scholar
  102. 102.
    Abuirmeileh A, Lever R, Kingsbury AE, Lees AJ, Locke IC, Knight RA, et al. The corticotrophin-releasing factor-like peptide urocortin reverses key deficits in two rodent models of Parkinson’s disease. Eur J Neurosci. 2007;26:417–23.PubMedCrossRefGoogle Scholar
  103. 103.
    Hu K, Li J, Shen Y, Lu W, Gao X, Zhang Q, et al. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release. 2009;134:55–61.PubMedCrossRefGoogle Scholar
  104. 104.
    Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm. 2011;415:273–83.PubMedCrossRefGoogle Scholar
  105. 105.
    Wen Z, Yan Z, Hu K, Pang Z, Cheng X, Guo L, et al. Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release. 2011;151:131–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang Y, Calon F, Zhu C, Boado RJ, Pardridge WM. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther. 2003;14:1–12.PubMedCrossRefGoogle Scholar
  107. 107.
    Gonzalez-Barrios JA, Lindahl M, Bannon MJ, Anaya-Martinez V, Flores G, Navarro-Quiroga I, et al. Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats. Mol Ther. 2006;14:857–65.PubMedCrossRefGoogle Scholar
  108. 108.
    Martinez-Fong D, Bannon MJ, Trudeau LE, Gonzalez-Barrios JA, Arango-Rodriguez ML, Hernandez-Chan NG, et al. NTS-Polyplex: a potential nanocarrier for neurotrophic therapy of Parkinson’s disease. Nanomedicine. 2012;8:1052–69.PubMedCrossRefGoogle Scholar
  109. 109.
    Huang R, Ke W, Liu Y, Jiang C, Pei Y. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials. 2008;29:238–46.PubMedCrossRefGoogle Scholar
  110. 110.
    Huang R, Han L, Li J, Ren F, Ke W, Jiang C, et al. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J Gene Med. 2009;11:754–63.PubMedCrossRefGoogle Scholar
  111. 111.
    Huang J, Liu H, Gu W, Yan Z, Xu Z, Yang Y, et al. A delivery strategy for rotenone microspheres in an animal model of Parkinson’s disease. Biomaterials. 2006;27:937–46.PubMedCrossRefGoogle Scholar
  112. 112.
    Sindhu KM, Saravananand KS, Mohanakumar KP. Behavioral differences in a rotenone-induced hemiparkinsonian rat model developed following intranigral or median forebrain bundle infusion. Brain Res. 2005;1051:25–34.PubMedCrossRefGoogle Scholar
  113. 113.
    Huang R, Ke W, Liu Y, Wu D, Feng L, Jiang C, et al. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci. 2010;290:123–30.PubMedCrossRefGoogle Scholar
  114. 114.
    Andersonand JT, Robertson NP. Risk factors and cerebrovascular disease. J Neurol. 2013;260:692–4.CrossRefGoogle Scholar
  115. 115.
    Cooke MJ, Wang Y, Morshead CM, Shoichet MS. Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials. 2011;32:5688–97.PubMedCrossRefGoogle Scholar
  116. 116.
    Gupta A, Nair S, Schweitzer AD, Kishore S, Johnson CE, Comunale JP, et al. Neuroimaging of cerebrovascular disease in the aging brain. Aging Dis. 2012;3:414–25.PubMedGoogle Scholar
  117. 117.
    Elger B, Gieseler M, Schmuecker O, Schumann I, Seltz A, Huth A. Extended therapeutic time window after focal cerebral ischemia by non-competitive inhibition of AMPA receptors. Brain Res. 2006;1085:189–94.PubMedCrossRefGoogle Scholar
  118. 118.
    Wuand D, Pardridge WM. Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc Natl Acad Sci U S A. 1999;96:254–9.CrossRefGoogle Scholar
  119. 119.
    Zhangand Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Res. 2001;889:49–56.CrossRefGoogle Scholar
  120. 120.
    Pardridge WM. Blood–brain barrier drug targeting enables neuroprotection in brain ischemia following delayed intravenous administration of neurotrophins. Adv Exp Med Biol. 2002;513:397–430.PubMedCrossRefGoogle Scholar
  121. 121.
    Wu D. Neuroprotection in experimental stroke with targeted neurotrophins. NeuroRx. 2005;2:120–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Song BW, Vinters HV, Wu D, Pardridge WM. Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood–brain barrier delivery vector. J Pharmacol Exp Ther. 2002;301:605–10.PubMedCrossRefGoogle Scholar
  123. 123.
    D’Agnilloand F, Alayash AI. Site-specific modifications and toxicity of blood substitutes. The case of diaspirin cross-linked hemoglobin. Adv Drug Deliv Rev. 2000;40:199–212.CrossRefGoogle Scholar
  124. 124.
    Conover CD, Linberg R, Shum KL, Shorr RG. The ability of polyethylene glycol conjugated bovine hemoglobin (PEG-Hb) to adequately deliver oxygen in both exchange transfusion and top-loaded rat models. Artif Cells Blood Substit Immobil Biotechnol. 1999;27:93–107.PubMedCrossRefGoogle Scholar
  125. 125.
    Lee J, Lee J, Yoon S, Nho K. Pharmacokinetics of 125I-radiolabelled PEG-hemoglobin SB1. Artif Cells Blood Substit Immobil Biotechnol. 2006;34:277–92.PubMedCrossRefGoogle Scholar
  126. 126.
    Ji HJ, Chai HY, Nahm SS, Lee J, Bae GW, Nho K, et al. Neuroprotective effects of the novel polyethylene glycol-hemoglobin conjugate SB1 on experimental cerebral thromboembolism in rats. Eur J Pharmacol. 2007;566:83–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Reddyand MK, Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J. 2009;23:1384–95.CrossRefGoogle Scholar
  128. 128.
    Erlandsson A, Lin CH, Yu F, Morshead CM. Immunosuppression promotes endogenous neural stem and progenitor cell migration and tissue regeneration after ischemic injury. Exp Neurol. 2011;230:48–57.PubMedCrossRefGoogle Scholar
  129. 129.
    Kolb B, Morshead C, Gonzalez C, Kim M, Gregg C, Shingo T, et al. Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J Cereb Blood Flow Metab. 2007;27:983–97.PubMedGoogle Scholar
  130. 130.
    Wang Y, Cooke MJ, Lapitsky Y, Wylie RG, Sachewsky N, Corbett D, et al. Transport of epidermal growth factor in the stroke-injured brain. J Control Release. 2011;149:225–35.PubMedCrossRefGoogle Scholar
  131. 131.
    Wang Y, Cooke MJ, Morshead CM, Shoichet MS. Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials. 2012;33:2681–92.PubMedCrossRefGoogle Scholar
  132. 132.
    Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111:1843–51.PubMedGoogle Scholar
  133. 133.
    Zhao H, Bao XJ, Wang RZ, Li GL, Gao J, Ma SH, et al. Postacute ischemia vascular endothelial growth factor transfer by transferrin-targeted liposomes attenuates ischemic brain injury after experimental stroke in rats. Hum Gene Ther. 2011;22:207–15.PubMedCrossRefGoogle Scholar
  134. 134.
    Kim JB, Sig CJ, Yu YM, Nam K, Piao CS, Kim SW, et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci. 2006;26:6413–21.PubMedCrossRefGoogle Scholar
  135. 135.
    Kim ID, Lim CM, Kim JB, Nam HY, Nam K, Kim SW, et al. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain. J Control Release. 2010;142:422–30.PubMedCrossRefGoogle Scholar
  136. 136.
    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.PubMedCrossRefGoogle Scholar
  137. 137.
    Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, et al. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci U S A. 2011;108:10952–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Lee J, Hyun H, Kim J, Ryu JH, Kim HA, Park JH, et al. Dexamethasone-loaded peptide micelles for delivery of the heme oxygenase-1 gene to ischemic brain. J Control Release. 2012;158:131–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Yu YP, Xu QQ, Zhang Q, Zhang WP, Zhang LH, Wei EQ. Intranasal recombinant human erythropoietin protects rats against focal cerebral ischemia. Neurosci Lett. 2005;387:5–10.PubMedCrossRefGoogle Scholar
  140. 140.
    Wang ZL, Cheng SM, Ma MM, Ma YP, Yang JP, Xu GL, et al. Intranasally delivered bFGF enhances neurogenesis in adult rats following cerebral ischemia. Neurosci Lett. 2008;446:30–5.PubMedCrossRefGoogle Scholar
  141. 141.
    Hanson LR, Roeytenberg A, Martinez PM, Coppes VG, Sweet DC, Rao RJ, et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther. 2009;330:679–86.PubMedCrossRefGoogle Scholar
  142. 142.
    Jiang Y, Wei N, Lu T, Zhu J, Xu G, Liu X. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. Neuroscience. 2011;172:398–405.PubMedCrossRefGoogle Scholar
  143. 143.
    Cheng X, Wang Z, Yang J, Ma M, Lu T, Xu G, et al. Acidic fibroblast growth factor delivered intranasally induces neurogenesis and angiogenesis in rats after ischemic stroke. Neurol Res. 2011;33:675–80.PubMedCrossRefGoogle Scholar
  144. 144.
    Lu T, Jiang Y, Zhou Z, Yue X, Wei N, Chen Z, et al. Intranasal ginsenoside Rb1 targets the brain and ameliorates cerebral ischemia/reperfusion injury in rats. Biol Pharm Bull. 2011;34:1319–24.PubMedCrossRefGoogle Scholar
  145. 145.
    Kim ID, Shin JH, Lee HK, Jin YC, Lee JK. Intranasal delivery of HMGB1-binding heptamer peptide confers a robust neuroprotection in the postischemic brain. Neurosci Lett. 2012;525:179–83.PubMedCrossRefGoogle Scholar
  146. 146.
    Zhu J, Jiang Y, Wu L, Lu T, Xu G, Liu X. Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience. 2012;202:342–51.PubMedCrossRefGoogle Scholar
  147. 147.
    Kim ID, Shin JH, Kim SW, Choi S, Ahn J, Han PL, et al. Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol Ther. 2012;20:829–39.PubMedCrossRefGoogle Scholar
  148. 148.
    Liu L, Venkatraman SS, Yang YY, Guo K, Lu J, He B, et al. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood–brain barrier. Biopolymers. 2008;90:617–23.PubMedCrossRefGoogle Scholar
  149. 149.
    Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni JK, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci. 2012;47:6–15.PubMedCrossRefGoogle Scholar
  150. 150.
    Ruan Y, Yao L, Zhang B, Zhang S, Guo J. Antinociceptive properties of nasal delivery of neurotoxin-loaded nanoparticles coated with polysorbate-80. Peptides. 2011;32:1526–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Ren T, Xu N, Cao C, Yuan W, Yu X, Chen J, et al. Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J Biomater Sci Polym Ed. 2009;20:1369–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Key Laboratory of Smart Drug Delivery (Fudan University) Ministry of Education; Department of Pharmaceutical SciencesSchool of Pharmacy, Fudan UniversityShanghaiChina

Personalised recommendations