Pharmaceutical Research

, Volume 30, Issue 11, pp 2880–2890 | Cite as

Epigenetic Regulation of Organic Anion Transporting Polypeptide 1B3 in Cancer Cell Lines

  • Satoki Imai
  • Ryota Kikuchi
  • Yuri Tsuruya
  • Sotaro Naoi
  • Sho Nishida
  • Hiroyuki Kusuhara
  • Yuichi SugiyamaEmail author
Research Paper



The expression of a multispecific organic anion transporter, OATP1B3/SLCO1B3, is associated with clinical prognosis and survival of cancer cells. The aims of present study were to investigate the involvement of epigenetic regulation in mRNA expression of a cancer-type variant of OATP1B3 (Ct-OATP1B3) in cancer cell lines.


The membrane localization and transport functions of Ct-OATP1B3 were investigated in HEK293 cells transiently expressing Ct-OATP1B3. DNA methylation profiles around the transcriptional start site of Ct-OATP1B3 in cancer cell lines were determined. The effects of a DNA methyltransferase inhibitor and siRNA knockdown of methyl-DNA binding proteins (MBDs) on the expression of Ct-OATP1B3 mRNA were investigated.


5′-RACE identified the TSS of Ct-OATP1B3 in PK-8 cells. Ct-OATP1B3 was localized on the plasma membrane, and showed the transport activities of E217βG, fluvastatin, rifampicin, and Gd-EOB-DTPA. The CpG dinucleotides were hypomethylated in Ct-OATP1B3-positive cell lines (DLD-1, TFK-1, PK-8, and PK-45P) but were hypermethylated in Ct-OATP1B3-negative cell lines (HepG2 and Caco-2). Treatment with a DNA methyltransferase inhibitor and siRNA knockdown of MBD2 significantly increased the expression of Ct-OATP1B3 mRNA in HepG2 and Caco-2.


Ct-OATP1B3 is capable of transporting its substrates into cancer cells. Its mRNA expression is regulated by DNA methylation-dependent gene silencing involving MBD2.


cancer cell line DNA methylation drug transporter epigenetics OATP1B3 



5′-rapid amplification cDNA ends


chromatin immunoprecipitation


estradiol 17β-D-glucuronide


gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid


inductively coupled plasma mass spectrometry


liquid chromatography-tandem mass spectrometry


methyl-DNA binding protein


organic anion transporting polypeptide


open reading frame


polymerase chain reaction


Solute carrier


tissue-dependent differentially methylated region


transcriptional start site



We thank Yuko Shiono and Yuta Shibue for their excellent technical assistance.

This study was supported by the Japan Society for the Promotion of Science [Grant-in-Aid for Scientific Research (S) 24229002, Scientific Research (B) 23390034, and Grant-in-Aid for Challenging Exploratory Research 21659037].

Supplementary material

11095_2013_1117_MOESM1_ESM.doc (68 kb)
ESM 1 (DOC 67 kb)
11095_2013_1117_MOESM2_ESM.ppt (168 kb)
ESM 2 (PPT 168 kb)
11095_2013_1117_MOESM3_ESM.ppt (1.5 mb)
ESM 3 (PPT 1.46 mb)
11095_2013_1117_MOESM4_ESM.ppt (122 kb)
ESM 4 (PPT 122 kb)
11095_2013_1117_Fig7_ESM.jpg (63 kb)

(JPEG 62 kb)

11095_2013_1117_MOESM5_ESM.tif (84 kb)
High resolution image (TIFF 83 kb)
11095_2013_1117_Fig8_ESM.jpg (141 kb)

(JPEG 141 kb)

11095_2013_1117_MOESM6_ESM.tif (127 kb)
High resolution image (TIFF 127 kb)


  1. 1.
    Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica. 2008;38(7–8):778–801.PubMedCrossRefGoogle Scholar
  3. 3.
    Maeda K, Sugiyama Y. Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet. 2008;23(4):223–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Yoshida K, Maeda K, Sugiyama Y. Hepatic and intestinal drug transporters: prediction of pharmacokinetic effects caused by drug-drug interactions and genetic polymorphisms. Annu Rev Pharmacol Toxicol. 2012.Google Scholar
  5. 5.
    van de Steeg E, Stranecky V, Hartmannova H, Noskova L, Hrebicek M, Wagenaar E, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest. 2012;122(2):519–28.PubMedCrossRefGoogle Scholar
  6. 6.
    Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, et al. LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology. 2001;120(7):1689–99.PubMedCrossRefGoogle Scholar
  7. 7.
    Muto M, Onogawa T, Suzuki T, Ishida T, Rikiyama T, Katayose Y, et al. Human liver-specific organic anion transporter-2 is a potent prognostic factor for human breast carcinoma. Cancer Sci. 2007;98(10):1570–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Monks NR, Liu S, Xu Y, Yu H, Bendelow AS, Moscow JA. Potent cytotoxicity of the phosphatase inhibitor microcystin LR and microcystin analogues in OATP1B1- and OATP1B3-expressing HeLa cells. Mol Cancer Ther. 2007;6(2):587–98.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee W, Belkhiri A, Lockhart AC, Merchant N, Glaeser H, Harris EI, et al. Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res. 2008;68(24):10315–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Hamada A, Sissung T, Price DK, Danesi R, Chau CH, Sharifi N, et al. Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in caucasian patients with androgen-independent prostatic cancer. Clin Cancer Res. 2008;14(11):3312–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Svoboda M, Wlcek K, Taferner B, Hering S, Stieger B, Tong D, et al. Expression of organic anion-transporting polypeptides 1B1 and 1B3 in ovarian cancer cells: relevance for paclitaxel transport. Biomed Pharmacother. 2011;65(6):417–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Ichihara S, Kikuchi R, Kusuhara H, Imai S, Maeda K, Sugiyama Y. DNA methylation profiles of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm Res. 2010;27(3):510–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Imai S, Kikuchi R, Kusuhara H, Sugiyama Y. DNA methylation and histone modification profiles of mouse organic anion transporting polypeptides. Drug Metab Dispos. 2013;41(1):72–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Nagai M, Furihata T, Matsumoto S, Ishii S, Motohashi S, Yoshino I, et al. Identification of a new organic anion transporting polypeptide 1B3 mRNA isoform primarily expressed in human cancerous tissues and cells. Biochem Biophys Res Commun. 2012;418(4):818–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Thakkar N, Kim K, Jang ER, Han S, Kim D, Merchant N, Lockhart AC, Lee W. A cancer-specific variant of the SLCO1B3 gene encodes a novel human organic anion transporting polypeptide 1B3 (OATP1B3) localized mainly in the cytoplasm of colon and pancreatic cancer cells. Mol Pharm. 2013;10(1):406–16.Google Scholar
  16. 16.
    Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol. 2012;52:135–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Kikuchi R, Kusuhara H, Hattori N, Shiota K, Kim I, Gonzalez FJ, et al. Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1alpha/beta and DNA methylation. Mol Pharmacol. 2006;70(3):887–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Hirano M, Maeda K, Shitara Y, Sugiyama Y. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther. 2004;311(1):139–46.PubMedCrossRefGoogle Scholar
  19. 19.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.PubMedGoogle Scholar
  20. 20.
    Kikuchi R, Kusuhara H, Hattori N, Kim I, Shiota K, Gonzalez FJ, et al. Regulation of tissue-specific expression of the human and mouse urate transporter 1 gene by hepatocyte nuclear factor 1 alpha/beta and DNA methylation. Mol Pharmacol. 2007;72(6):1619–25.PubMedCrossRefGoogle Scholar
  21. 21.
    Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology. 2001;33(3):561–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Huntriss J, Hinkins M, Oliver B, Harris SE, Beazley JC, Rutherford AJ, et al. Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells. Mol Reprod Dev. 2004;67(3):323–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Suzuki Y, Yamashita R, Nakai K, Sugano S. DBTSS: DataBase of human transcriptional start sites and full-length cDNAs. Nucleic Acids Res. 2002;30(1):328–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Yamashita R, Sathira NP, Kanai A, Tanimoto K, Arauchi T, Tanaka Y, et al. Genome-wide characterization of transcriptional start sites in humans by integrative transcriptome analysis. Genome Res. 2011;21(5):775–89.PubMedCrossRefGoogle Scholar
  25. 25.
    Narita M, Hatano E, Arizono S, Miyagawa-Hayashino A, Isoda H, Kitamura K, et al. Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma. J Gastroenterol. 2009;44(7):793–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Shimizu K, Takashima T, Yamane T, Sasaki M, Kageyama H, Hashizume Y, et al. Whole-body distribution and radiation dosimetry of [11C]telmisartan as a biomarker for hepatic organic anion transporting polypeptide (OATP) 1B3. Nucl Med Biol. 2012;39(6):847–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Clouaire T, Stancheva I. Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci. 2008;65(10):1509–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Bogdanovic O, Veenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma. 2009;118(5):549–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Lopez-Serra L, Ballestar E, Ropero S, Setien F, Billard LM, Fraga MF, et al. Unmasking of epigenetically silenced candidate tumor suppressor genes by removal of methyl-CpG-binding domain proteins. Oncogene. 2008;27(25):3556–66.PubMedCrossRefGoogle Scholar
  30. 30.
    Chatagnon A, Perriaud L, Nazaret N, Croze S, Benhattar J, Lachuer J, et al. Preferential binding of the methyl-CpG binding domain protein 2 at methylated transcriptional start site regions. Epigenetics. 2011;6(11).Google Scholar
  31. 31.
    Hawkins PG, Morris KV. RNA and transcriptional modulation of gene expression. Cell Cycle. 2008;7(5):602–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Tan Y, Zhang B, Wu T, Skogerbo G, Zhu X, Guo X, et al. Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol. 2009;10:12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Satoki Imai
    • 1
    • 2
  • Ryota Kikuchi
    • 1
  • Yuri Tsuruya
    • 1
  • Sotaro Naoi
    • 1
  • Sho Nishida
    • 3
  • Hiroyuki Kusuhara
    • 1
  • Yuichi Sugiyama
    • 4
    Email author
  1. 1.Laboratory of Molecular Pharmacokinetics Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
  2. 2.Pharmacokinetics Research LaboratoriesDainippon Sumitomo Pharma Co., Ltd.OsakaJapan
  3. 3.Laboratory of Plant Nutrition and Fertilizers Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  4. 4.Sugiyama Laboratory, RIKEN Innovation CenterResearch Cluster for Innovation, RIKENYokohama CityJapan

Personalised recommendations