Pharmaceutical Research

, Volume 30, Issue 12, pp 3029–3044 | Cite as

Improved Oral Bioavailability of BCS Class 2 Compounds by Self Nano-Emulsifying Drug Delivery Systems (SNEDDS): The Underlying Mechanisms for Amiodarone and Talinolol

  • Anna Elgart
  • Irina Cherniakov
  • Yanir Aldouby
  • Abraham J. Domb
  • Amnon HoffmanEmail author
Research Paper



Superior bioavailability of BCS Class 2 compounds incorporated into SNEDDS was previously reported. This study aims to elucidate the underlying mechanisms accountable for this phenomenon.


SNEDDS of amiodarone (AM) and talinolol were developed. Pharmacokinetic parameters were assessed in vivo. Effect on intestinal permeability, P-gp efflux and toxicity was evaluated in vitro (Caco-2) and ex vivo (Ussing). Solubilization was assessed in vitro (Dynamic Lipolysis Model). Effect on intraenterocyte metabolism was evaluated using CYP3A4 microsomes.


Oral administration of AM-SNEDDS and talinolol-SNEDDS resulted in higher and less variable AUC and Cmax. In vitro, higher talinolol-SNEDDS Papp indicated Pgp inhibition. Lipolysis of AM-SNEDDS resulted in higher AM concentration in the fraction available for absorption. Incubation of AM-SNEDDS with CYP3A4 indicated CYP inhibition. SNEDDS didn’t alter mannitol Papp and TEER. SNEDDS effect was transient.


Multiple mechanisms are accountable for improved bioavailability and reduced variability of Class-2 compounds by SNEDDS: increased solubilization, reduced intraenterocyte metabolism and reduced P-gp efflux. SNEDDS effect is reversible and doesn’t cause intestinal tissue or cell damage. These comprehensive findings can be used for intelligent selection of drugs for which oral bioavailability will improve upon incorporation into SNEDDS, based on recognition of the drug’s absorption barriers and the ability of SNEDDS to overcome them.

Key words

first pass metabolism intestinal absorption intestinal solubilization intra-enterocyte metabolism lipophilic drugs P-gp efflux self emulsifying drug delivery systems 





Area under the plasma drug concentration vs. time curve


Biopharmaceutics Classification System


Biopharmaceutics Drug Disposition System Classification


Total body clearance


Maximal concentration of drug in plasma


Cyclosporine A


Grapefruit Juice




Lactate Dehydrogenase






Self Nano-Emulsifying Drug Delivery System


Transepithelial Electrical Resistance


Time to reach maximal concentration of drug in plasma


Volume of distribution at steady state


Acknowledgments and Disclosures

This study was in part supported by the Nofar Program of the Israel Ministry of Commerce and Trade.

A. Hoffman and A. J. Domb are affiliated with the David R. Bloom Center for Pharmacy.

This work is a part of a Ph. D. thesis of Anna Elgart.

The authors would like to thank Dr. Wahid Khan for his excellent technical assistance.


  1. 1.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26. PubMed PMID: 11259830. Epub 2001/03/22. eng.PubMedCrossRefGoogle Scholar
  2. 2.
    Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20. PubMed PMID: 7617530. Epub 1995/03/01. eng.PubMedCrossRefGoogle Scholar
  3. 3.
    Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3–4):278–87. PubMed PMID: 16815001. Epub 2006/07/04. eng.PubMedCrossRefGoogle Scholar
  4. 4.
    Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82. PubMed PMID: 15082340. Epub 2004/04/15. eng.PubMedCrossRefGoogle Scholar
  5. 5.
    Anton N, Vandamme TF. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res. 2011;28(5):978–85. PubMed PMID: 21057856.PubMedCrossRefGoogle Scholar
  6. 6.
    Bekerman T, Golenser J, Domb A. Cyclosporin nanoparticulate lipospheres for oral administration. J Pharm Sci. 2004;93(5):1264–70. PubMed PMID: 15067702. Epub 2004/04/07. eng.PubMedCrossRefGoogle Scholar
  7. 7.
    Hauss DJ, Fogal SE, Ficorilli JV, Price CA, Roy T, Jayaraj AA, et al. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci. 1998;87(2):164–9. PubMed PMID: 9519148. Epub 1998/03/31. eng.PubMedCrossRefGoogle Scholar
  8. 8.
    Charman S-MKAJHCJHPGAEWN. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int J Pharm. 1998;167:155–64.CrossRefGoogle Scholar
  9. 9.
    Porter CJ, Kaukonen AM, Boyd BJ, Edwards GA, Charman WN. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm Res. 2004;21(8):1405–12. PubMed PMID: 15359575. Epub 2004/09/14. eng.PubMedCrossRefGoogle Scholar
  10. 10.
    Nielsen FS, Petersen KB, Mullertz A. Bioavailability of probucol from lipid and surfactant based formulations in minipigs: influence of droplet size and dietary state. Eur J Pharm Biopharm. 2008;69(2):553–62. PubMed PMID: 18294829. Epub 2008/02/26. eng.PubMedCrossRefGoogle Scholar
  11. 11.
    Mueller EA, Kovarik JM, van Bree JB, Grevel J, Lucker PW, Kutz K. Influence of a fat-rich meal on the pharmacokinetics of a new oral formulation of cyclosporine in a crossover comparison with the market formulation. Pharm Res. 1994;11(1):151–5. PubMed PMID: 8140046. Epub 1994/01/01. eng.PubMedCrossRefGoogle Scholar
  12. 12.
    Porter CJ, Charman WN. In vitro assessment of oral lipid based formulations. Adv Drug Deliv Rev. 2001;50 Suppl 1:S127–47. PubMed PMID: 11576699. Epub 2001/09/29. eng.PubMedCrossRefGoogle Scholar
  13. 13.
    Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23. PubMed PMID: 15771225.PubMedCrossRefGoogle Scholar
  14. 14.
    Arida AI, Al-Tabakha MM, Hamoury HA. Improving the high variable bioavailability of griseofulvin by SEDDS. Chem Pharm Bull (Tokyo). 2007;55(12):1713–9. PubMed PMID: 18057745. Epub 2007/12/07. eng.CrossRefGoogle Scholar
  15. 15.
    Ofokansi KC, Chukwu KI, Ugwuanyi SI. The use of liquid self-microemulsifying drug delivery systems based on peanut oil/tween 80 in the delivery of griseofulvin. Drug Dev Ind Pharm. 2009;35(2):185–91. PubMed PMID: 18825525. Epub 2008/10/01. eng.PubMedCrossRefGoogle Scholar
  16. 16.
    Taha E, Ghorab D, Zaghloul AA. Bioavailability assessment of vitamin A self-nanoemulsified drug delivery systems in rats: a comparative study. Med Princ Pract. 2007;16(5):355–9. PubMed PMID: 17709923. Epub 2007/08/22. eng.PubMedCrossRefGoogle Scholar
  17. 17.
    Mueller EA, Kovarik JM, van Bree JB, Tetzloff W, Grevel J, Kutz K. Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm Res. 1994;11(2):301–4. PubMed PMID: 8165192. Epub 1994/02/01. eng.PubMedCrossRefGoogle Scholar
  18. 18.
    Borhade V, Nair H, Hegde D. Design and evaluation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus. AAPS PharmSciTech. 2008;9(1):13–21. PubMed PMID: 18446456. Epub 2008/05/01. eng.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu CY, Benet LZ, Hebert MF, Gupta SK, Rowland M, Gomez DY, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther. 1995;58(5):492–7. PubMed PMID: 7586942.PubMedCrossRefGoogle Scholar
  20. 20.
    Abdalla A, Klein S, Mader K. A new self-emulsifying drug delivery system (SEDDS) for poorly soluble drugs: characterization, dissolution, in vitro digestion and incorporation into solid pellets. Eur J Pharm Sci. 2008;35(5):457–64. PubMed PMID: 18940249. Epub 2008/10/23. eng.PubMedCrossRefGoogle Scholar
  21. 21.
    Cuine JF, McEvoy CL, Charman WN, Pouton CW, Edwards GA, Benameur H, et al. Evaluation of the impact of surfactant digestion on the bioavailability of danazol after oral administration of lipidic self-emulsifying formulations to dogs. J Pharm Sci. 2008;97(2):995–1012. PubMed PMID: 18064698. Epub 2007/12/08. eng.PubMedCrossRefGoogle Scholar
  22. 22.
    Dimitrijevic D, Shaw AJ, Florence AT. Effects of some non-ionic surfactants on transepithelial permeability in Caco-2 cells. J Pharm Pharmacol. 2000;52(2):157–62. PubMed PMID: 10714945. Epub 2000/03/14. eng.PubMedCrossRefGoogle Scholar
  23. 23.
    Quan YS, Hattori K, Lundborg E, Fujita T, Murakami M, Muranishi S, et al. Effectiveness and toxicity screening of various absorption enhancers using Caco-2 cell monolayers. Biol Pharm Bull. 1998;21(6):615–20. PubMed PMID: 9657048. Epub 1998/07/10. eng.PubMedCrossRefGoogle Scholar
  24. 24.
    Benet LZ. There are no useful CYP3A probes that quantitatively predict the in vivo kinetics of other CYP3A substrates and no expectation that one will be found. Mol Interv. 2005;5(2):79–83. PubMed PMID: 15821156. Epub 2005/04/12. eng.PubMedCrossRefGoogle Scholar
  25. 25.
    Roden DM. Antiarrhythmic drugs: from mechanisms to clinical practice. Heart. 2000;84(3):339–46. PubMed PMID: 10956304.PubMedCrossRefGoogle Scholar
  26. 26.
    Libersa CC, Brique SA, Motte KB, Caron JF, Guedon-Moreau LM, Humbert L, et al. Dramatic inhibition of amiodarone metabolism induced by grapefruit juice. Br J Clin Pharmacol. 2000;49(4):373–8. PubMed PMID: 10759694. Pubmed Central PMCID: 2014943. Epub 2000/04/12. eng.PubMedCrossRefGoogle Scholar
  27. 27.
    Trausch B, Oertel R, Richter K, Gramatte T. Disposition and bioavailability of the beta 1-adrenoceptor antagonist talinolol in man. Biopharm Drug Dispos. 1995;16(5):403–14. PubMed PMID: 8527689. Epub 1995/07/01. eng.PubMedCrossRefGoogle Scholar
  28. 28.
    Tubic M, Wagner D, Spahn-Langguth H, Bolger MB, Langguth P. In silico modeling of non-linear drug absorption for the P-gp substrate talinolol and of consequences for the resulting pharmacodynamic effect. Pharm Res. 2006;23(8):1712–20. PubMed PMID: 16832615.PubMedCrossRefGoogle Scholar
  29. 29.
    Thorn HA, Lundahl A, Schrickx JA, Dickinson PA, Lennernas H. Drug metabolism of CYP3A4, CYP2C9 and CYP2D6 substrates in pigs and humans. Eur J Pharm Sci. 2011;43(3):89–98. PubMed PMID: 21447389. Epub 2011/03/31. eng.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoffman A, Levy G. Kinetics of drug action in disease states. XXIX. Effect of experimental nephrotic syndrome on the pharmacodynamics of heptabarbital: implications of severe hypoalbuminemia. J Pharmacol Exp Ther. 1989;249(1):117–22. PubMed PMID: 2565385. Epub 1989/04/01. eng.PubMedGoogle Scholar
  31. 31.
    Mainprize T, Grady LT. Standardization of an in vitro method of drug absorption. Pharmacopeial Forum. 1998;24(2):6015–23.Google Scholar
  32. 32.
    Sek L, Porter CJ, Kaukonen AM, Charman WN. Evaluation of the in-vitro digestion profiles of long and medium chain glycerides and the phase behaviour of their lipolytic products. J Pharm Pharmacol. 2002;54(1):29–41. PubMed PMID: 11833493. Epub 2002/02/09. eng.PubMedCrossRefGoogle Scholar
  33. 33.
    Sek L, Porter CJ, Charman WN. Characterisation and quantification of medium chain and long chain triglycerides and their in vitro digestion products, by HPTLC coupled with in situ densitometric analysis. J Pharm Biomed Anal. 2001;25(3–4):651–61. PubMed PMID: 11377046. Epub 2001/05/30. eng.PubMedCrossRefGoogle Scholar
  34. 34.
    Maes A, Baert K, Croubels S, De Clercq D, van Loon G, Deprez P, et al. Determination of amiodarone and desethylamiodarone in horse plasma and urine by high-performance liquid chromatography combined with UV detection and electrospray ionization mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2006;836(1–2):47–56. PubMed PMID: 16616880. Epub 2006/04/18. eng.CrossRefGoogle Scholar
  35. 35.
    Kagan L, Dreifinger T, Mager DE, Hoffman A. Role of p-glycoprotein in region-specific gastrointestinal absorption of talinolol in rats. Drug Metab Dispos. 2010;38(9):1560–6. PubMed PMID: 20538723. Epub 2010/06/12. eng.PubMedCrossRefGoogle Scholar
  36. 36.
    Neuhoff S, Ungell AL, Zamora I, Artursson P. pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug-drug interactions. Pharm Res. 2003;20(8):1141–8. PubMed PMID: 12948010. Epub 2003/09/02. eng.PubMedCrossRefGoogle Scholar
  37. 37.
    Bohets H, Annaert P, Mannens G, Van Beijsterveldt L, Anciaux K, Verboven P, et al. Strategies for absorption screening in drug discovery and development. Curr Top Med Chem. 2001;1(5):367–83. PubMed PMID: 11899103. Epub 2002/03/20. eng.PubMedCrossRefGoogle Scholar
  38. 38.
    Sun D, Lennernas H, Welage LS, Barnett JL, Landowski CP, Foster D, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res. 2002;19(10):1400–16. PubMed PMID: 12425456. Epub 2002/11/12. eng.PubMedCrossRefGoogle Scholar
  39. 39.
    Barthe L, Woodley J, Houin G. Gastrointestinal absorption of drugs: methods and studies. Fundam Clin Pharmacol. 1999;13(2):154–68. PubMed PMID: 10226759. Epub 1999/05/05. eng.PubMedCrossRefGoogle Scholar
  40. 40.
    van de Kerkhof EG, de Graaf IA, Groothuis GM. In vitro methods to study intestinal drug metabolism. Curr Drug Metab. 2007;8(7):658–75. PubMed PMID: 17979654. Epub 2007/11/06. eng.PubMedCrossRefGoogle Scholar
  41. 41.
    Thomas N, Holm R, Müllertz A, Rades T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release. 2012;160(1):25–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Weitschies W, Bernsdorf A, Giessmann T, Zschiesche M, Modess C, Hartmann V, et al. The talinolol double-peak phenomenon is likely caused by presystemic processing after uptake from gut lumen. Pharm Res. 2005;22(5):728–35. PubMed PMID: 15906167. Epub 2005/05/21. eng.PubMedCrossRefGoogle Scholar
  43. 43.
    Robertson MD, Parkes M, Warren BF, Ferguson DJ, Jackson KG, Jewell DP, et al. Mobilisation of enterocyte fat stores by oral glucose in humans. Gut. 2003;52(6):834–9. PubMed PMID: 12740339. Pubmed Central PMCID: 1773679. Epub 2003/05/13. eng.PubMedCrossRefGoogle Scholar
  44. 44.
    Tarr BD, Yalkowsky SH. Enhanced intestinal absorption of cyclosporine in rats through the reduction of emulsion droplet size. Pharm Res. 1989;6(1):40–3. PubMed PMID: 2717516. Epub 1989/01/01. eng.PubMedCrossRefGoogle Scholar
  45. 45.
    Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13(12):1838–45. PubMed PMID: 8987081. Epub 1996/12/01. eng.PubMedCrossRefGoogle Scholar
  46. 46.
    Sigfridsson K, Lundqvist AJ, Strimfors M. Particle size reduction for improvement of oral absorption of the poorly soluble drug UG558 in rats during early development. Drug Dev Ind Pharm. 2009;35(12):1479–86. PubMed PMID: 19929207. Epub 2009/11/26. eng.PubMedCrossRefGoogle Scholar
  47. 47.
    Thomas K, Koelwel C, Machei U, Farber L, Gopferich A. Three generations of cyclosporine a formulations: an in vitro comparison. Drug Dev Ind Pharm. 2005;31(4–5):357–66. PubMed PMID: 16093201. Epub 2005/08/12. eng.PubMedGoogle Scholar
  48. 48.
    Brown Jr AL. Microvilli of the human jejunal epithelial cell. J Cell Biol. 1962;12:623–7. PubMed PMID: 13873575. Pubmed Central PMCID: 2106048. Epub 1962/03/01. eng.PubMedCrossRefGoogle Scholar
  49. 49.
    Muchow M, Maincent P, Muller RH. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm. 2008;34(12):1394–405. PubMed PMID: 18665980. Epub 2008/07/31. eng.PubMedCrossRefGoogle Scholar
  50. 50.
    Bonati M, Gaspari F, D’Aranno V, Benfenati E, Neyroz P, Galletti F, et al. Physicochemical and analytical characteristics of amiodarone. J Pharm Sci. 1984;73(6):829–31. PubMed PMID: 6737273. Epub 1984/06/01. eng.PubMedCrossRefGoogle Scholar
  51. 51.
    Dahan A, Hoffman A. Use of a dynamic in vitro lipolysis model to rationalize oral formulation development for poor water soluble drugs: correlation with in vivo data and the relationship to intra-enterocyte processes in rats. Pharm Res. 2006;23(9):2165–74. PubMed PMID: 16902814. Epub 2006/08/12. eng.PubMedCrossRefGoogle Scholar
  52. 52.
    Cuine JF, Charman WN, Pouton CW, Edwards GA, Porter CJ. Increasing the proportional content of surfactant (Cremophor EL) relative to lipid in self-emulsifying lipid-based formulations of danazol reduces oral bioavailability in beagle dogs. Pharm Res. 2007;24(4):748–57. PubMed PMID: 17372700. Epub 2007/03/21. eng.PubMedCrossRefGoogle Scholar
  53. 53.
    Fatouros DG, Nielsen FS, Douroumis D, Hadjileontiadis LJ, Mullertz A. In vitro-in vivo correlations of self-emulsifying drug delivery systems combining the dynamic lipolysis model and neuro-fuzzy networks. Eur J Pharm Biopharm. 2008;69(3):887–98. PubMed PMID: 18367386. Epub 2008/03/28. eng.PubMedCrossRefGoogle Scholar
  54. 54.
    Artursson P. Cell cultures as models for drug absorption across the intestinal mucosa. Crit Rev Ther Drug Carrier Syst. 1991;8(4):305–30. PubMed PMID: 1769065. Epub 1991/01/01. eng.PubMedGoogle Scholar
  55. 55.
    Lindmark T, Nikkila T, Artursson P. Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther. 1995;275(2):958–64. PubMed PMID: 7473188. Epub 1995/11/01. eng.PubMedGoogle Scholar
  56. 56.
    Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010/03/02 ed2010. p. 215–36.Google Scholar
  57. 57.
    Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man--fact or myth. Pharm Res. 1997;14(6):763–6. PubMed PMID: 9210194. Epub 1997/06/01. eng.PubMedCrossRefGoogle Scholar
  58. 58.
    Hugger ED, Novak BL, Burton PS, Audus KL, Borchardt RT. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J Pharm Sci. 2002;91(9):1991–2002. PubMed PMID: 12210046.PubMedCrossRefGoogle Scholar
  59. 59.
    Hugger ED, Audus KL, Borchardt RT. Effects of poly(ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers. J Pharm Sci. 2002;91(9):1980–90. PubMed PMID: 12210045.PubMedCrossRefGoogle Scholar
  60. 60.
    de Castro WV, Mertens-Talcott S, Derendorf H, Butterweck V. Grapefruit juice-drug interactions: grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells. J Pharm Sci. 2007;96(10):2808–17. PubMed PMID: 17542018. Epub 2007/06/02. eng.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang H, Yao M, Morrison RA, Chong S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch Pharm Res. 2003;26(9):768–72. PubMed PMID: 14560928. Epub 2003/10/17. eng.PubMedCrossRefGoogle Scholar
  62. 62.
    Rege BD, Kao JP, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci. 2002;16(4–5):237–46. PubMed PMID: 12208453. Epub 2002/09/05. eng.PubMedCrossRefGoogle Scholar
  63. 63.
    Lo YL. Relationships between the hydrophilic-lipophilic balance values of pharmaceutical excipients and their multidrug resistance modulating effect in Caco-2 cells and rat intestines. J Control Release. 2003;90(1):37–48. PubMed PMID: 12767705. Epub 2003/05/28. eng.PubMedCrossRefGoogle Scholar
  64. 64.
    Katneni K, Charman SA, Porter CJ. Impact of cremophor-EL and polysorbate-80 on digoxin permeability across rat jejunum: delineation of thermodynamic and transporter related events using the reciprocal permeability approach. J Pharm Sci. 2007;96(2):280–93. PubMed PMID: 17051595. Epub 2006/10/20. eng.PubMedCrossRefGoogle Scholar
  65. 65.
    Ren X, Mao X, Cao L, Xue K, Si L, Qiu J, et al. Nonionic surfactants are strong inhibitors of cytochrome P450 3A biotransformation activity in vitro and in vivo. Eur J Pharm Sci. 2009;36(4–5):401–11. PubMed PMID: 19041719. Epub 2008/12/02. eng.PubMedCrossRefGoogle Scholar
  66. 66.
    Sha X, Yan G, Wu Y, Li J, Fang X. Effect of self-microemulsifying drug delivery systems containing Labrasol on tight junctions in Caco-2 cells. Eur J Pharm Sci. 2005;24(5):477–86. PubMed PMID: 15784337. Epub 2005/03/24. eng.PubMedCrossRefGoogle Scholar
  67. 67.
    Harris RZ, Jang GR, Tsunoda S. Dietary effects on drug metabolism and transport. Clin Pharmacokinet. 2003;42(13):1071–88. PubMed PMID: 14531721. Epub 2003/10/09. eng.PubMedCrossRefGoogle Scholar
  68. 68.
    Bailey DG, Malcolm J, Arnold O, Spence JD. Grapefruit juice-drug interactions. Br J Clin Pharmacol. 1998;46(2):101–10. PubMed PMID: 9723817. Pubmed Central PMCID: 1873672. Epub 1998/09/02. eng.PubMedCrossRefGoogle Scholar
  69. 69.
    Fuhr U. Drug interactions with grapefruit juice. Extent, probable mechanism and clinical relevance. Drug Saf. 1998;PubMed PMID: 9565737. Epub 1998/05/05. eng(4):251–72. PubMed PMID: 9565737. Epub 1998/05/05. eng.CrossRefGoogle Scholar
  70. 70.
    Dahan A, Altman H. Food-drug interaction: grapefruit juice augments drug bioavailability--mechanism, extent and relevance. Eur J Clin Nutr. 2004;58(1):1–9. PubMed PMID: 14679360. Epub 2003/12/18. eng.PubMedCrossRefGoogle Scholar
  71. 71.
    Balayssac D, Authier N, Cayre A, Coudore F. Does inhibition of P-glycoprotein lead to drug-drug interactions? Toxicol Lett. 2005;156(3):319–29. PubMed PMID: 15763631. Epub 2005/03/15. eng.PubMedCrossRefGoogle Scholar
  72. 72.
    Phang JM, Poore CM, Lopaczynska J, Yeh GC. Flavonol-stimulated efflux of 7,12-dimethylbenz(a)anthracene in multidrug-resistant breast cancer cells. Cancer Res. 1993;53(24):5977–81. PubMed PMID: 7903198. Epub 1993/12/15. eng.PubMedGoogle Scholar
  73. 73.
    Soldner A, Christians U, Susanto M, Wacher VJ, Silverman JA, Benet LZ. Grapefruit juice activates P-glycoprotein-mediated drug transport. Pharm Res. 1999;16(4):478–85. PubMed PMID: 10227700. Epub 1999/05/05. eng.PubMedCrossRefGoogle Scholar
  74. 74.
    Ohnishi A, Matsuo H, Yamada S, Takanaga H, Morimoto S, Shoyama Y, et al. Effect of furanocoumarin derivatives in grapefruit juice on the uptake of vinblastine by Caco-2 cells and on the activity of cytochrome P450 3A4. Br J Pharmacol. 2000;130(6):1369–77. PubMed PMID: 10903978. Pubmed Central PMCID: 1572193. Epub 2000/07/25. eng.PubMedCrossRefGoogle Scholar
  75. 75.
    Dahan A, Amidon GL. Grapefruit juice and its constituents augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein. Pharm Res. 2009;26(4):883–92. PubMed PMID: 19048359. Epub 2008/12/03. eng.PubMedCrossRefGoogle Scholar
  76. 76.
    Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, et al. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm. 2004;274(1–2):65–73. PubMed PMID: 15072783. Epub 2004/04/10. eng.PubMedCrossRefGoogle Scholar
  77. 77.
    Kale AA, Patravale VB. Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine. AAPS PharmSciTech. 2008;9(1):191–6. PubMed PMID: 18446481. Epub 2008/05/01. eng.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anna Elgart
    • 1
  • Irina Cherniakov
    • 1
  • Yanir Aldouby
    • 1
  • Abraham J. Domb
    • 1
  • Amnon Hoffman
    • 1
    Email author
  1. 1.Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations