Pharmaceutical Research

, Volume 30, Issue 10, pp 2459–2474 | Cite as

Nanoparticles in the Brain: A Potential Therapeutic System Targeted to an Early Defect Observed in Many Neurodegenerative Diseases

  • Shermali GunawardenaEmail author
Expert Review


Currently, there are no effective treatments or cures for many neurodegenerative diseases affecting an aging baby-boomer generation. The ongoing problem with many of the current therapeutic treatments is that most are aimed at dissolving or dissociating aggregates and preventing cell death, common neuropathology often seen towards the end stage of disease. Often such treatments have secondary effects that are more devastating than the disease itself. Thus, effective therapeutics must be focused on directly targeting early events such that global deleterious effects of drugs are minimized while beneficial therapeutic effects are maximized. Recent work indicates that in many neurodegenerative diseases long distance axonal transport is perturbed, leading to axonal blockages. Axonal blockages are observed before pathological or behavioral phenotypes are seen indicating that this pathway is perturbed early in disease. Thus, developing novel therapeutic treatments to an early defect is critical in curing disease. Here I review neurodegenerative disease and current treatment strategies, and discuss a novel nanotechnology based approach that is aimed at targeting an early pathway, with the rationale that restoring an early problem will prevent deleterious downstream effects. To accomplish this, knowledge exchange between biologists, chemists, and engineers will be required to manufacture effective novel biomaterials for medical use.


anterograde transport axonal transport dynein kinesin neurodegenerative disease neurons/axons organically modified silica particles retrograde transport synthetic vesicle therapeutic vesicle 



Alzheimer’s disease


Amyotrophic lateral sclerosis


Amyloid precursor protein

Amyloid beta


Huntington’s disease




Kinesin heavy chain


Kinesin light chain




Organically modified silica


Parkinson’s disease



The author regrets that space limitations restricted some work from being cited. The development of ideas presented here was supported in part by the J.R. Oishei Foundation. The author thanks Kathryn Kowalski for editorial assistance, members of the Gunawardena laboratory for helpful discussions and Priyantha Karunaratne for constant support.


  1. 1.
    Gunawardena S, Goldstein LSB. Cargo carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol. 2004;58:258–71.PubMedCrossRefGoogle Scholar
  2. 2.
    Hirokawa N, Takemura R. Kinesin superfamily of proteins and their various functions and dynamics. Exp Cell Res. 2004;301:50–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Karki SJ, Holzbaur EL. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol. 1999;11:45–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Hakimi MA, Speicher DW, Shiekhattar R. The motor protein kinesin-1 links neurofibromin and merlin in a common cellular pathway of neurofibromatosis. J Biol Chem. 2002;277(40):36909–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Ohashi S, Koike K, Omori A, Ichinose S, Ohara S, Kobayashi S, et al. Identification of mRNA/protein (mRNP) complexes containing Puralpha, mStaufen, fragile X protein, and myosin Va and their association with rough endoplasmic reticulum equipped with a kinesin motor. J Biol Chem. 2002;277(40):37804–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Reid E, Kloos M, Ahley-Koch A, et al. A kinesin heavy chain (KIF5A) mutation in Hereditary Spastic Paralegia (SPG10). Am J Hum Genet. 2002;71:1189–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Tessa A, Silvestri G, de Leva MF, Modoni A, Denora PS, Masciullo M, et al. A novel KIF5A/SPG10 mutation in spastic paraplegia associated with axonal neuropathy. J Neurol 2008;255:1090–2.Google Scholar
  8. 8.
    Lo Giudice M, Neri M, Falco M, Sturnio M, Calzolari E, Di Benedetto D, et al. A missence mutation in the coiled-coil domain of the KIF5A gene and late-onset hereditary spastic paraplegia. Arch Neurol 2006;63(2):284–7Google Scholar
  9. 9.
    Whitmarsh AJ, Kuan CY, Kennedy NJ, Kelkar N, Haydar TF, Mordes JP, et al. Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev. 1998;15(18):2421–32.CrossRefGoogle Scholar
  10. 10.
    Gunawardena S, Goldstein LSB. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron. 2001;32:389–401.PubMedCrossRefGoogle Scholar
  11. 11.
    Stokin GB, Lillo C, Falzone TL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science. 2005;307(5713):1282–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Kamal A, Stokin GB, Yang Z, Xia CH, Goldstein LSB. Axonal transport of amyloid precursor protein requires formation of a complex with kinesin-I. Neuron. 2000;28:449–59.PubMedCrossRefGoogle Scholar
  13. 13.
    Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LSB. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature. 2001;414:643–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 2001;105:587–97.PubMedCrossRefGoogle Scholar
  15. 15.
    Mok H, Shin H, Kim S, Lee JR, Yoon J, Kim E. Association of the kinesin superfamily motor protein KIF1Balpha with postsynaptic density-95 (PSD-95), synapse-associated protein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens-1 proteins. J Neurosci. 2002;22(13):5253–8.PubMedGoogle Scholar
  16. 16.
    Marszalek JR, Liu X, Roberts EA, Chui D, Marth JD, Williams DS, et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell. 2000;102(2):175–8.PubMedCrossRefGoogle Scholar
  17. 17.
    McGuire JR, Rong J, Li SH, Li XJ. Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J Biol Chem. 2006;281(6):3552–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Power D, Sirinivasan S, Gunawardena S. In vivo evidence for the disruption of Rab11 vesicle transport by loss of huntingtin. Neuroreport. 2012;23(16):970–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Utton AM, Noble JW, Hill EJ, Anderton HB, Hanger PD. Molecular motors implicated in axonal transport of tau and α-synuclein. J Cell Sci. 2005;118:4645–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011;147(4):893–906.PubMedCrossRefGoogle Scholar
  21. 21.
    Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science. 2003;300:808–12.PubMedCrossRefGoogle Scholar
  22. 22.
    LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascano J, Tokito M, et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron. 2002;34:715–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Tai AW, Chuang JZ, Bode C, Wolfrum U, Sung CH. Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell. 1999;97(7):877–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Tai CY, Dujardin DL, Faulkner NE, Vallee RB. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J Cell Biol. 2002;156(6):959–68.PubMedCrossRefGoogle Scholar
  25. 25.
    Sasaki S, Shionoya A, Ishida M, Gambello MJ, Yingling J, Wynshaw-Boris A, et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron. 2000;28(3):681–96.PubMedCrossRefGoogle Scholar
  26. 26.
    Caviston JP, Ross JL, Antony SM, Tokito M, Holzbaur EL. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. PNAS. 2007;104:10045–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Gunawardena S, Her L, Brusch RG, et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron. 2003;40:1–20.CrossRefGoogle Scholar
  28. 28.
    Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 2004;118:127–38.PubMedCrossRefGoogle Scholar
  29. 29.
    Li SH, Gutekunst CA, Hersch SM, Li XJ. Interaction of huntingtin-associated protein with dynactin P150Glued. J Neurosci. 1998;18:1261–9.PubMedGoogle Scholar
  30. 30.
    Engelender S, Sharp AH, Colomer V, Tokito MK, Lanahan A, Worley P, et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum Mol Genet. 1997;6:2205–12.PubMedCrossRefGoogle Scholar
  31. 31.
    Pal A, Severin F, Lommer B, Shevchenko A, Zerial M. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. J Cell Biol. 2006;172(4):605–18.PubMedCrossRefGoogle Scholar
  32. 32.
    Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E, et al. Mutant dynactin in motor neuron disease. Nat Genet. 2003;33:455–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Lo Giudice M, Neri M, Falco M, Sturnio M, Calzolari E, Di Benedetto D, et al. A missense mutation in the coiled-coil domain of the KIF5A gene and late-onset hereditary spastic paraplegia. Arch Neurol. 2006;63:284–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Blair MA, Ma S, Hedera P. Mutation in KIF5A can also cause adult-onset hereditary spastic paraplegia. Neurogenetics. 2007;7:47–50.CrossRefGoogle Scholar
  35. 35.
    Williamson TL, Cleveland DW. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci. 1999;2:50–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Holzbaur EL, Scherer SS. Microtubules, axonal transport, and neuropathy. N Engl J Med. 2011;365(24):2330–2.PubMedCrossRefGoogle Scholar
  37. 37.
    Chevalier-Larsen E, Holzbaur EL. Axonal transport and neurodegenerative disease. Biochim Biophys Acta. 2006;1762(11–12):1094–108.PubMedGoogle Scholar
  38. 38.
    Mandelkow E, Mandelkow EM. Kinesin motors and disease. Trends Cell Biol. 2002;12(12):585–91.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee S, Sato Y, Nixon RA. Primary lysosomal dysfunction causes cargo-specific deficits of axonal transport leading to Alzheimer-like neuritic dystrophy. Autophagy. 2011;7(12):1562–3.PubMedCrossRefGoogle Scholar
  40. 40.
    Li H, Li SH, Yu ZX, Shelbourne P, Li XJ. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J Neurosci. 2001;21:8473–81.PubMedGoogle Scholar
  41. 41.
    Charrin BC, Saudou F, Humbert S. Axonal transport failure in neurodegenerative disorders: the case of Huntington’s disease. Pathol Biol (Paris). 2005;53(4):189–92.CrossRefGoogle Scholar
  42. 42.
    Bilsland LG, Sahai E, Kelly G, Golding M, Greensmith L, Schiavo G. Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci U S A. 2010;107(47):20523–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Amaratunga A, Fine RE. Generation of amyloidogenic C-terminal fragments during rapid axonal transport in vivo of beta-amyloid precursor protein in the optic nerve. J Biol Chem. 1995;270:17268–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Inomata H, Nakamura Y, Hayakawa A, Takata H, Suzuki T, Miyazawa K, et al. A scaffold protein JIP-1b enhances amyloid precursor protein phosphorylation by JNK and its association with kinesin light chain 1. J Biol Chem. 2003;278:22946–55.PubMedCrossRefGoogle Scholar
  45. 45.
    Matsuda S, Yasukawa T, Homma Y, Ito Y, Niikura T, Hiraki T, et al. c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer’s amyloid precursor protein with JNK. J Neurosci. 2001;21:6597–607.PubMedGoogle Scholar
  46. 46.
    Satpute-Krishnan P, Degiorgis JA, Conley MP, Jang M, Bearer EL. A peptide zipcode sufficient for anterograde transport within amyloid precursor protein. PNAS. 2006;103:16532–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Reis GF, Yang G, Szpankowski L, Weaver C, Shah SB, Robinson JT, et al. Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila. Mol Cell Biol. 2012;23(9):1700–14.CrossRefGoogle Scholar
  48. 48.
    Dhaenens CM, Van Brussel E, Schraen-Maschke S, Pasquier F, Delacourte A, Sablonniere B. Association study of three polymorphisms of kinesin light chain 1 gene with Alzheimer’s disease. Neurosci Lett. 2004;368:290–2.PubMedCrossRefGoogle Scholar
  49. 49.
    Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, et al. Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci. 2004;24:3592–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Yoon IS, Chen E, Busse T, Repetto E, Lakshmana MK, Koo EH, et al. Low-density lipoprotein receptor-related protein promotes amyloid precursor protein trafficking to lipid rafts in the endocytic pathway. FASEB J. 2007;21:2742–52.PubMedCrossRefGoogle Scholar
  51. 51.
    Lazarov O, Morfini GA, Pigino G, Gadadhar A, Chen X, Robinson J, et al. Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer’s disease-linked mutant presenilin 1. J Neurosci. 2007;27:7011–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Galvan V, Banwait S, Spilman P, Gorostiza OF, Peel A, Ataie M, et al. Interaction of ASK1 and the beta-amyloid precursor protein in a stress-signaling complex. Neurobiol Dis. 2007;28:65–75.PubMedCrossRefGoogle Scholar
  53. 53.
    Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol. 2001;152:959–70.PubMedCrossRefGoogle Scholar
  54. 54.
    Scheinfeld MH, Roncarati R, Vito P, Lopez PA, Abdullah M, D’Adamio L. Jun NH2-terminal kinase (JNK) interacting protein 1 (JIP1) binds the cytoplasmic domain of the Alzheimer’s beta-amyloid precursor protein (APP). J Biol Chem. 2002;277:3767–75.PubMedCrossRefGoogle Scholar
  55. 55.
    Taru H, Iijima K, Hase M, Kirino Y, Yagi Y, Suzuki T. Interaction of Alzheimer’s beta-amyloid precursor family proteins with scaffold proteins of the JNK signaling cascade. J Biol Chem. 2002;277:20070–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Sheng JG, Price DL, Koliatsos VE. The beta-amyloid-related proteins presenilin 1 and BACE1 are axonally transported to nerve terminals in the brain. Exp Neurol. 2003;184:1053–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Muresan Z, Muresan V. The amyloid-beta precursor protein is phosphorylated via distinct pathways during differentiation, mitosis, stress, and degeneration. Mol Biol Cell. 2007;18:3835–44.PubMedCrossRefGoogle Scholar
  58. 58.
    Papp H, Pakaski M, Kasa P. Presenilin-1 and the amyloid precursor protein are transported bidirectionally in the sciatic nerve of adult rat. Neurochem Int. 2002;41(6):429–35.PubMedCrossRefGoogle Scholar
  59. 59.
    Kasa P, Papp H, Pakaski M. Presenilin-1 and its N-terminal and C-terminal fragments are transported in the sciatic nerve of rat. Brain Res. 2001;909:159–69.PubMedCrossRefGoogle Scholar
  60. 60.
    Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST, Busciglio J. Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci. 2003;23:4499–508.PubMedGoogle Scholar
  61. 61.
    Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 2002;21:281–93.PubMedCrossRefGoogle Scholar
  62. 62.
    Morfini G, Szebenyi G, Brown H, Pant HC, Pigino G, DeBoer S, et al. A Novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J. 2004;23:2235–45.PubMedCrossRefGoogle Scholar
  63. 63.
    Weaver C, Leidel C, Szpankowski L, Farley NM, Shubeita GT, Goldstein LS. Endogenous GSK-3/shaggy regulates bidirectional axonal transport of the amyloid precursor protein. Traffic. 2012. doi: 10.1111/tra.12037.Google Scholar
  64. 64.
    Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science. 2001;293:493–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee WC, Yoshihara M, Littleton JT. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc Natl Acad Sci U S A. 2004;101:3224–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Szebenyi G, Morfini GA, Babcock A, Gould M, Selkoe K, Stenoien DL, et al. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron. 2003;40:41–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Gunawardena S, Goldstein LSB. Polyglutamine diseases and transport problems: Deadly traffic jams on neuronal highways. Arch Neurol. 2005;62:46–51.PubMedCrossRefGoogle Scholar
  68. 68.
    DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron. 1995;14:1075–81.PubMedCrossRefGoogle Scholar
  69. 69.
    Block-Galarza J, Chase KO, Sapp E, Vaughn KT, Vallee RB, DiFiglia M, et al. Fast transport and retrograde movement of huntingtin and HAP 1 in axons. Neuroreport. 1997;8:2247–51.PubMedCrossRefGoogle Scholar
  70. 70.
    Ohyama T, Verstreken P, Ly CV, Rosenmund T, Rajan A, Tien AC, et al. Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. J Cell Biol. 2007;179:1481–96.PubMedCrossRefGoogle Scholar
  71. 71.
    Li X, Sapp E, Valencia A, Kegel KB, Qin ZH, Alexander J, et al. A function of huntingtin in guanine nucleotide exchange on Rab11. Neuroreport. 2008;19(16):1643–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Sahlender DA, Roberts RC, Arden SD, Spudich G, Taylor MJ, Luzio JP, et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol. 2005;169(2):285–95.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang F, Ström AL, Fukada K, Lee S, Hayward LJ, Zhu H. Interaction between familial amyotrophic lateral sclerosis (ALS)-linked SOD1 mutants and the dynein complex. J Biol Chem. 2007;282(22):16691–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012;135(Pt 7):2058–73.PubMedCrossRefGoogle Scholar
  75. 75.
    Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M. Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s Disease mutation. J Biol Chem. 1998;273:26292–4.PubMedCrossRefGoogle Scholar
  76. 76.
    Jensen PH, Li JY, Dahlstrom A, Dotti CG. Axonal transport of synucleins is mediated by all rate components. Eur J Neurosci. 1999;11:3369–76.PubMedCrossRefGoogle Scholar
  77. 77.
    Selkoe DJ. Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med. 2011;17(9):1060–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Golde TE, Schneider LS, Koo EH. Anti-aβ therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron. 2011;69(2):203–13.PubMedCrossRefGoogle Scholar
  79. 79.
    Di Vaira M, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P. Clioquinol, a drug for Alzheimer’s disease specifically interfering with brain metal metabolism: structural characterization of its zinc(II) and copper(II) complexes. Inorg Chem. 2004;43(13):3795–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol. 2003;60(12):1685–91.PubMedCrossRefGoogle Scholar
  81. 81.
    Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Logroscino G, Santamato A, et al. Immunotherapy for Alzheimer’s disease: from anti-β-amyloid to tau-based immunization strategies. Immunotherapy. 2012;4(2):213–38.PubMedCrossRefGoogle Scholar
  82. 82.
    Imbimbo BP, Ottonello S, Frisardi V, Solfrizzi V, Greco A, Seripa D, et al. Solanezumab for the treatment of mild-to-moderate Alzheimer’s disease. Expert Rev Clin Immunol. 2012;8(2):135–49.PubMedCrossRefGoogle Scholar
  83. 83.
    Miller G. Alzheimer’s research. Stopping Alzheimer’s before it starts. Science. 2012;337(6096):790–2.PubMedCrossRefGoogle Scholar
  84. 84.
    Qu B-X, Lambracht-Washington D, Fu M, Eagar TN, Stüve O, Rosenberg RN. Analysis of three plasmid systems for use in DNA Aβ42 immunization as therapy for Alzheimer’s disease. Vaccine. 2010;28(32):5280.PubMedCrossRefGoogle Scholar
  85. 85.
    Brooks DJ. Dopamine agonists: their role in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2000;68:685–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Cotzias GC, Papavasiliou PS, Gellene R. L-dopa in parkinson’s syndrome. N Engl J Med. 1969;281(5):272.PubMedGoogle Scholar
  87. 87.
    Kringelbach ML, Jenkinson N, Owen SLF, Aziz TZ. Translational principles of deep brain stimulation. Nat Rev Neurosci. 2007;8:623–35.PubMedCrossRefGoogle Scholar
  88. 88.
    Landwehrmeyer GB, Dubois B, de Yébenes JG, Kremer B, Gaus W, Kraus PH, et al. Riluzole in Huntington’s disease: a 3-year, randomized controlled study. Ann Neurol. 2007;62(3):262–72.PubMedCrossRefGoogle Scholar
  89. 89.
    Huntington Study Group DOMINO Investigators. A futility study of minocycline in Huntington’s disease. Mov Disord. 2010;25(13):2219–24.CrossRefGoogle Scholar
  90. 90.
    Katsuno M, Adachi H, Sobue G. Sweet relief for Huntington disease. Nat Med. 2004;10(2):123–4.PubMedCrossRefGoogle Scholar
  91. 91.
    Bachoud-Lévi AC, Gaura V, Brugières P, Lefaucheur JP, Boissé MF, Maison P, et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol. 2006;5(4):303–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Alpay M, Koroshetz WJ. Quetiapine in the treatment of behavioral disturbances in patients with Huntington’s disease. Psychosomatics. 2006;47(1):70–2.PubMedCrossRefGoogle Scholar
  93. 93.
    Mason SL, Barker RA. Emerging drug therapies in Huntington’s disease. Expert Opin Emerg Drugs. 2009;14(2):273–97.PubMedCrossRefGoogle Scholar
  94. 94.
    Henriques A, Pitzer C, Schneider A. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front Neurosci. 2010;4:32.PubMedGoogle Scholar
  95. 95.
    Miller TM, Kaspar BK, Kops GJ, Yamanaka K, Christian LJ, Gage FH, et al. Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann Neurol. 2005;57:773–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Glass JD, Boulis NM, Johe K, Rutkove SB, Federici T, Polak M, et al. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells. 2012;30(6):1144–51.PubMedCrossRefGoogle Scholar
  97. 97.
    Schenk D. Amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci. 2002;3(10):824–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30(5):194–202.PubMedCrossRefGoogle Scholar
  99. 99.
    Hasnain M, Vieweg WV, Baron MS, Beatty-Brooks M, Fernandez A, Pandurangi AK. Pharmacological management of psychosis in elderly patients with parkinsonism. Am J Med. 2009;122(7):614–22.PubMedCrossRefGoogle Scholar
  100. 100.
    The National Collaborating Centre for Chronic Conditions, editor. Symptomatic pharmacological therapy in Parkinson’s disease. Parkinson’s Disease. London: Royal College of Physicians; 2006. p. 59–100.Google Scholar
  101. 101.
    Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28.PubMedCrossRefGoogle Scholar
  102. 102.
    Miller RG, Mitchell JD, Lyon M, Moore DH. In: Miller, Robert G. editors. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 1; 2007. CD001447.Google Scholar
  103. 103.
    Squitieri F, Ciammola A, Colonnese C, Ciarmiello A. Neuroprotective effects of riluzole in Huntington’s disease. Eur J Nucl Med Mol Imaging. 2008;35(1):221–2.PubMedCrossRefGoogle Scholar
  104. 104.
    Vale RD, Schnapp BJ, Reese TS, Sheetz MP. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon. Cell. 1985;40:559–69.PubMedCrossRefGoogle Scholar
  105. 105.
    Terasaki M, Schmidek A, Galbraith JA, Gallant PE, Reese TS. Transport of cytoskeletal elements in the squid giant axon. PNAS. 1995;92:11500–3.PubMedCrossRefGoogle Scholar
  106. 106.
    Shah SB, Nolan R, Davis E, Stokin GB, Niesman I, Canto I, et al. Examination of potential mechanisms of amyloid-induced defects in neuronal transport. Neurobiol Dis. 2009;36(1):11–25.PubMedCrossRefGoogle Scholar
  107. 107.
    Kaasik A, Safiulina D, Choubey V, Kuum M, Zharkovsky A, Veksler V. Mitochondrial swelling impairs the transport of organelles in cerebellar granule neurons. J Biol Chem. 2007;282(45):32821–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Satpute-Krishnan P, DeGiorgis JA, Bearer EL. Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of Alzheimer’s disease. Aging Cell. 2003;2:305–18.PubMedCrossRefGoogle Scholar
  109. 109.
    Kaspar BK, Lladó J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science. 2003;301(5634):839–42.PubMedCrossRefGoogle Scholar
  110. 110.
    Kells AP, Fong DM, Dragunow M, During MJ, Young D, Connor B. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther. 2004;9:682–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2003;348:255–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Check E. Harmful potential of viral vectors fuels doubts over gene therapy. Nature. 2003;423:573–4.PubMedGoogle Scholar
  113. 113.
    Hsich G, Sena-Esteves M, Breakefield XO. Critical issues in gene therapy for neurologic disease. Hum Gene Ther. 2002;13(5):579–604.PubMedCrossRefGoogle Scholar
  114. 114.
    Marwick C. FDA halts gene therapy trials after leukaemia case in France. BMJ. 2003;326:181.PubMedCrossRefGoogle Scholar
  115. 115.
    Lehrman S. Virus treatment questioned after gene therapy death. Nature. 1999;401:517–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, et al. Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano. 2008;2:449.PubMedCrossRefGoogle Scholar
  117. 117.
    Ohulchanskyy TY, Roy I, Goswami LN, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett. 2007;7(9):2835–42.PubMedCrossRefGoogle Scholar
  118. 118.
    De la Zerda A, Zavaleta C, Keren S, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol. 2008;3:557–62.PubMedCrossRefGoogle Scholar
  119. 119.
    Cui B, Wu C, Chen L, Ramirez A, Bearer EL, Li WP, et al. One at a time, live tracking of NGF axonal transport using quantum dots. PNAS. 2007;104(34):13666–71.PubMedCrossRefGoogle Scholar
  120. 120.
    Nitzsche B, Ruhnow F, Diez S. Quantum-dot-assisted characterization of microtubule rotations during cargo transport. Nat Nanotechnol. 2008;3:552–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Fischer T, Agarwal A, Hess H. A smart dust biosensor powered by kinesin motors. Nat Nanotechnol. 2009;3:162–6.CrossRefGoogle Scholar
  122. 122.
    Barandeh F, Nguyen PL, Kumar R, et al. Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS One. 2012;7(1):e29424.PubMedCrossRefGoogle Scholar
  123. 123.
    Chan WH, Shiao NH. Cytotoxic effect of CdSe quantum dots on mouse embryonic development. Acta Pharmacol Sin. 2008;29:259–66.PubMedCrossRefGoogle Scholar
  124. 124.
    Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir. 2007;23:1974–80.PubMedCrossRefGoogle Scholar
  125. 125.
    Roy I, Ohulchanskyy TY, Pudavar HE, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. J Am Chem Soc. 2003;125:7860.PubMedCrossRefGoogle Scholar
  126. 126.
    Roy I, Stachowiak MK, Bergey EJ. Nonviral gene transfection nanoparticles: function and applications in the brain. Nanomedicine. 2008;4:89–97.PubMedCrossRefGoogle Scholar
  127. 127.
    Stachowiak EK, Roy I, Lee YW, et al. Targeting novel integrative nuclear FGFR1 signaling by nanoparticle-mediated gene transfer stimulates neurogenesis in the adult brain. Integr Biol (Camb). 2009;1(5–6):394–403.CrossRefGoogle Scholar
  128. 128.
    Slowing II, Wu CW, Vivero-Escoto JL, Lin VS. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small. 2009;5:57–62.PubMedCrossRefGoogle Scholar
  129. 129.
    Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 2005;5:113–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Jain TK, Roy I, De TK, Maitra AN. Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier. J Am Chem Soc. 1998;120:11092.CrossRefGoogle Scholar
  131. 131.
    Fang X, Liu X, Schuster S, Wan W. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. J Am Chem Soc. 1999;121:2921–2.CrossRefGoogle Scholar
  132. 132.
    Walcarius A, Etienne M, Lebeau. Rate of access to the binding sites in organically modified silicates—part 2. Ordered mesoporous silicas grafted with amine or thiol groups. Chem Mater. 2003;15:2161–73.CrossRefGoogle Scholar
  133. 133.
    Han L, Sakamoto Y, Terasaki O, Li Y, Che S. Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures. J Mater Chem. 2007;17:1216–21.CrossRefGoogle Scholar
  134. 134.
    Santra S, Liesenfeld B, Dutta D, et al. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. J Nanosci Nanotechnol. 2005;5:899–904.PubMedCrossRefGoogle Scholar
  135. 135.
    Santra S, Yang H, Dutta D, et al. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun (Camb). 2004;24:2810–1.CrossRefGoogle Scholar
  136. 136.
    Lal XM, Levy L, Kim KS, et al. Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence. Chem Mater. 2000;12:2632–9.CrossRefGoogle Scholar
  137. 137.
    Pandey SK, Gryshuk AL, Sajjad M, et al. Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy. A possible “see and treat” approach. J Med Chem. 2005;48:6286–95.PubMedCrossRefGoogle Scholar
  138. 138.
    Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, et al. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano. 2010;4(2):699–708.PubMedCrossRefGoogle Scholar
  139. 139.
    Segat D, Tavano R, Donini M, et al. Proinflammatory effects of bare and PEGylated ORMOSIL-, PLGA- and SUV-NPs on monocytes and PMNs and their modulation by f-MLP. Nanomedicine (Lond). 2011;6(6):1027–46.CrossRefGoogle Scholar
  140. 140.
    Zhao H, Greenwald RB, Reddy P, Xia J, Peng P. A new platform for oligonucleotide delivery utilizing the PEG prodrug approach. Bioconjug Chem. 2005;16(4):758–66.PubMedCrossRefGoogle Scholar
  141. 141.
    Yu D, Zhao Y, Choe YH, Zhao Q, Hsieh M, Peng P. Cellular penetration and localization of polyethylene glycol. Proc Am Assoc Cancer Res. 2004;45:644.Google Scholar
  142. 142.
    Trabulo S, Cardoso AL, Mano M, Pedroso de Lima MC. Cell-penetrating peptides—Mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals. 2010;3:961–93.CrossRefGoogle Scholar
  143. 143.
    Tan J, Wang Y, Yip X, Glynn F, Shepherd RK, Caruso F. Nanoporous peptide particles for encapsulating and releasing neurtrophic factors in an animal model of neurodegeneration. Adv Mater. 2012;24:3362–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Cimini A, D’Angelo B, Das S, Gentile R, Benedetti E, Singh V, et al. Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Ab aggregates modulate neuronal survival pathways. Acta Biomater. 2012;8:2056–67.PubMedCrossRefGoogle Scholar
  145. 145.
    Qu L, Akbergenova Y, Hu Y, Schikorski T. Synapse-to-synapse variation in mean synaptic vesicle size and its relationship with synaptic morphology and function. J Comp Neurol. 2009;514:343–52.PubMedCrossRefGoogle Scholar
  146. 146.
    Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci U S A. 2004;101:15027–32.PubMedCrossRefGoogle Scholar
  147. 147.
    Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. PNAS. 2005;102(2):279–84.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesThe State University of New York at BuffaloBuffaloUSA

Personalised recommendations