Pharmaceutical Research

, Volume 30, Issue 4, pp 1137–1146 | Cite as

Nano-encapsulation of Vitamin D3 Active Metabolites for Application in Chemotherapy: Formulation Study and in Vitro Evaluation

  • Eyad Almouazen
  • Sandrine BourgeoisEmail author
  • Lars Petter Jordheim
  • Hatem Fessi
  • Stephanie Briançon
Research Paper



Calcitriol (1,25-dihydroxyvitamin D3), the active metabolite of vitamin D3, is a potential anticancer agent but with high risk of hypercalcemia which limits the achievement of effective serum concentrations. Thus, calcitriol targeting delivery by nanoparticles may present a good solution.


Vitamin D3 active metabolites were encapsulated into polymeric nanoparticles and different formulation parameters were tested. The growth inhibitory efficiency of these nanoparticles was carried out in vitro on human breast adenocarinoma cells (MCF-7).


Using cholecalciferol (the inactive metabolite), different polymer and oil ratios were compared to select nanoparticles presenting high encapsulation efficiency and sustained release profile. Calcidiol/calcitriol loaded nanoparticles had good encapsulation efficiencies (around 90%) associated with sustained releases over 7 days and enhanced stability. Moreover, loaded nanoparticles showed similar growth inhibition to non-encapsulated metabolites of vitamin D3 on day 4 and higher activities on days 7 and 10 after treatment initiation.


The nano-encapsulation of vitamin D3 active metabolites may offer a new and potentially effective strategy for vitamin D3-based chemotherapy overcoming its actual limitations. The targeting delivery of vitamin D3 metabolites should be encouraged.


biodegradable polymeric nanoparticles drug delivery MCF-7 cell line tumor vitamin D3 


  1. 1.
    Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29:664–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7:684–700.PubMedCrossRefGoogle Scholar
  3. 3.
    Beer TM, Myrthue A. Calcitriol in cancer treatment: from the lab to the clinic. Mol Cancer Ther. 2004;3:373–81.PubMedGoogle Scholar
  4. 4.
    Gross C, Stamey T, Hancock S, Feldman D. Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin D3 (calcitriol). J Urol. 1998;159:2035–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Woloszynska-Read A, Johnson CS, Trump DL. Vitamin D and cancer: clinical aspects. Best Pract Res Clin Endocrinol Metab. 2011;25:605–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Beer TM, Munar M, Henner WD. A phase I trial of pulse calcitriol in patients with refractory malignancies: pulse dosing permits substantial dose escalation. Cancer. 2001;91:2431–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Scher HI, Jia X, Chi K, de Wit R, Berry WR, Albers P, et al. Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol versus docetaxel plus prednisone for patients with castration-resistant prostate cancer. J Clin Oncol. 2011;29:2191–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Hughes MR, Baylink DJ, Jones PG, Haussler MR. Radioligand receptor assay for 25-hydroxyvitamin D2/D3 and 1 alpha, 25-dihydroxyvitamin D2/D3. J Clin Invest. 1976;58:61–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Townsend K, Evans KN, Campbell MJ, Colston KW, Adams JS, Hewison M. Biological actions of extra-renal 25-hydroxyvitamin D-1alpha-hydroxylase and implications for chemoprevention and treatment. J Steroid Biochem Mol Biol. 2005;97:103–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Barreto AM, Schwartz GG, Woodruff R, Cramer SD. 25-Hydroxyvitamin D3, the prohormone of 1,25-dihydroxyvitamin D3, inhibits the proliferation of primary prostatic epithelial cells. Cancer Epidemiol Biomarkers Prev. 2000;9:265–70.PubMedGoogle Scholar
  11. 11.
    Lou YR, Molnar F, Perakyla M, Qiao S, Kalueff AV, St-Arnaud R, et al. 25-Hydroxyvitamin D(3) is an agonistic vitamin D receptor ligand. J Steroid Biochem Mol Biol. 2010;118:162–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66:1–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Overbergh L, Decallonne B, Valckx D, Verstuyf A, Depovere J, Laureys J, et al. Identification and immune regulation of 25-hydroxyvitamin D-1-alpha-hydroxylase in murine macrophages. Clin Exp Immunol. 2000;120:139–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Yokomura K, Suda T, Sasaki S, Inui N, Chida K, Nakamura H. Increased expression of the 25-hydroxyvitamin D(3)-1alpha-hydroxylase gene in alveolar macrophages of patients with lung cancer. J Clin Endocrinol Metab. 2003;88:5704–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385:113–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Hillaireau H, Couvreur P. Nanocarriers’ Entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66:2873–96.PubMedCrossRefGoogle Scholar
  17. 17.
    Loomis K, McNeeley K, Bellamkonda RV. Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications. Soft Matter. 2011;7:839–56.CrossRefGoogle Scholar
  18. 18.
    Pavanetto F, Conti B, Genta I, Giunchedi P. Solvent evaporation, solvent extraction and spray drying for polylactide microsphere preparation. Int J Pharm. 1992;84:151–9.CrossRefGoogle Scholar
  19. 19.
    Luca G, Basta G, Calafiore R, Rossi C, Giovagnoli S, Esposito E, et al. Multifunctional microcapsules for pancreatic islet cell entrapment: design, preparation and in vitro characterization. Biomaterials. 2003;24:3101–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Nguyen TLU, Tey SY, Pourgholami MH, Morris DL, Davis TP, Barner-Kowollik C, et al. Synthesis of semi-biodegradable crosslinked microspheres for the delivery of 1,25 dihydroxyvitamin D3 for the treatment of hepatocellular carcinoma. Eur Polym J. 2007;43:1754–67.CrossRefGoogle Scholar
  21. 21.
    Sun F, Ju C, Chen J, Liu S, Liu N, Wang K, et al. Nanoparticles based on hydrophobic alginate derivative as nutraceutical delivery vehicle: vitamin D3 loading. Artif Cell Blood Sub. 2012;40:113–9.CrossRefGoogle Scholar
  22. 22.
    Li Q, Liu CG, Huang ZH, Xue FF. Preparation and characterization of nanoparticles based on hydrophobic alginate derivative as carriers for sustained release of vitamin D3. J Agr Food Chem. 2011;59:1962–7.CrossRefGoogle Scholar
  23. 23.
    Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1–4.CrossRefGoogle Scholar
  24. 24.
    Jordheim LP, Guittet O, Lepoivre M, Galmarini CM, Dumontet C. Increased expression of the large subunit of ribonucleotide reductase is involved in resistance to gemcitabine in human mammary adenocarcinoma cells. Mol Cancer Ther. 2005 Aug 1;4(8):1268–76.Google Scholar
  25. 25.
    Holland SJ, Tighe BJ, Gould PL. Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J Control Release. 1986;4:155–80.CrossRefGoogle Scholar
  26. 26.
    Teixeira M, Alonso MJ, Pinto MMM, Barbosa CM. Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur J Pharm Biopharm. 2005;59:491–500.PubMedCrossRefGoogle Scholar
  27. 27.
    Washington C. Drug release from microdisperse systems: a critical review. Int J Pharm. 1990;58:1–12.CrossRefGoogle Scholar
  28. 28.
    Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci. 1996;85:530–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Colston KW, Hansen CM. Mechanisms implicated in the growth regulatory effects of vitamin D in breast cancer. Endocr Relat Cancer. 2002;9:45–59.PubMedCrossRefGoogle Scholar
  30. 30.
    Segersten U, Holm PK, Björklund P, Hessman O, Nordgren H, Binderup L, et al. 25-Hydroxyvitamin D3 1alpha-hydroxylase expression in breast cancer and use of non-1alpha-hydroxylated vitamin D analogue. Breast Cancer Res. 2005;7:R980–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Jin C, Bai L, Wu H, Song W, Guo G, Dou K. Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm Res. 2009;26:1776–84.PubMedCrossRefGoogle Scholar
  32. 32.
    Goldberg EP, Hadba AR, Almond BA, Marotta JS. Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery. J Pharm Pharmacol. 2002;54:159–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Al-Ghananeem AM, Malkawi AH, Muammer YM, Balko JM, Black EP, Mourad W, et al. Intratumoral delivery of paclitaxel in solid tumor from biodegradable hyaluronan nanoparticle formulations. AAPS Pharm Sci Tech. 2009;10:410–7.CrossRefGoogle Scholar
  34. 34.
    Bernardi A, Braganhol E, Jäger E, Figueiró F, Edelweiss MI, Pohlmann AR, et al. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett. 2009;281:53–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Almouazen E, Bourgeois S, Boussaïd A, Valot P, Malleval C, Fessi H, et al. Development of a nanoparticle-based system for the delivery of retinoic acid into macrophages. Int J Pharm. 2012;430:207–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Eyad Almouazen
    • 1
  • Sandrine Bourgeois
    • 1
    • 3
    Email author
  • Lars Petter Jordheim
    • 2
    • 3
  • Hatem Fessi
    • 1
    • 3
  • Stephanie Briançon
    • 1
    • 3
  1. 1.University Lyon, University Claude Bernard Lyon 1 Laboratoire d’Automatique et de Génie des Procédés, LAGEP UMR CNRS 5007VilleurbanneFrance
  2. 2.Centre de Recherche en Cancérologie de LyonLyonFrance
  3. 3.University Lyon 1, ISPB-School of PharmacyLyonFrance

Personalised recommendations