Pharmaceutical Research

, Volume 30, Issue 1, pp 1–15 | Cite as

A Physiologically Based Pharmacokinetic Model of the Minipig: Data Compilation and Model Implementation

Expert Review


In today’s pharmaceutical research and development, physiologically-based pharmacokinetic (PBPK) modeling plays an important role in the design, evaluation and interpretation of pharmacokinetic, toxicokinetic and formulation studies. PBPK models incorporate in vitro physicochemical and biochemical data in a physiologically based model framework to simulate in vivo exposure. The comparison of simulated concentrations to those measured in in vivo studies can be used to gain insights into compound behavior and to inform PBPK based human pharmacokinetic predictions. The Göttingen minipig is gaining importance as a large animal model in pharmaceutical research due to its physiological and anatomical similarities to human and is increasingly replacing dog and non-human primate in preclinical studies. However, no PBPK model for minipig has yet been published. This review discusses the information available to establish the physiological database for this species and highlights the gaps in current knowledge. A preliminary PBPK model is created from this database and simulations for two drugs dosed both intravenously and orally are compared to measured plasma concentrations. Results support the validity of the model with simulated plasma concentrations within the range of the observations. In conclusion, the model will need to be refined as additional physiological data become available, but it can already provide useful simulations to assist pharmaceutical research and development in the minipig.


absorption modeling distribution elimination intestinal absorption metabolism minipig physiologically based pharmacokinetic modeling pig 



Advanced Compartmental Absorption and Transit


Biopharmaceutics Classification System


cardiac output


cytochrome P450


fraction of dose absorbed


glomerular filtration rate




physiologically based pharmacokinetic




surface area enhancement factor

Supplementary material

11095_2012_911_MOESM1_ESM.doc (110 kb)
ESM 1(DOC 109 kb)


  1. 1.
    Sinha VK, et al. From preclinical to human–prediction of oral absorption and drug-drug interaction potential using physiologically based pharmacokinetic (PBPK) modeling approach in an industrial setting: a workflow by using case example. Biopharm Drug Dispos. 2012;33(2):111–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Rowland M and Benet LZ. Lead PK commentary: Predicting human pharmacokinetics. J Pharm Sci. 2011.Google Scholar
  3. 3.
    Jones HM, et al. Simulation of human intravenous and oral pharmacokinetics of 21 diverse compounds using physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2011;50(5):331–47.PubMedCrossRefGoogle Scholar
  4. 4.
    Jones HM, et al. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45(5):511–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm. 2008;5(5):760–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Lave T, et al. Challenges and opportunities with modelling and simulation in drug discovery and drug development. Xenobiotica Fate Foreign Compd Biol Syst. 2007;37(10–11):1295–310.Google Scholar
  7. 7.
    Brown RP, et al. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Heal. 1997;13(4):407–84.Google Scholar
  8. 8.
    Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci. 2002;91(5):1358–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Parrott N, et al. Predicting pharmacokinetics of drugs using physiologically based modeling–application to food effects. AAPS J. 2009;11(1):45–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Forster R, et al. The RETHINK project on minipigs in the toxicity testing of new medicines and chemicals: conclusions and recommendations. J Pharmacol Toxicol Methods. 2010;62(3):236–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Dressman JB, Thelen K, Willmann S. An update on computational oral absorption simulation. Expert Opin Drug Metab Toxicology. 2011;7(11):1345–64.CrossRefGoogle Scholar
  12. 12.
    Sjogren E, Bredberg U, Lennernas H. The pharmacokinetics and hepatic disposition of repaglinide in pigs: mechanistic modeling of metabolism and transport. Mol Pharm. 2012;9(4):823–41.PubMedCrossRefGoogle Scholar
  13. 13.
    Bergman E, et al. Enterohepatic disposition of rosuvastatin in pigs and the impact of concomitant dosing with cyclosporine and gemfibrozil. Drug Metabolism Dispos Biol Fate Chem. 2009;37(12):2349–58.CrossRefGoogle Scholar
  14. 14.
    Thorn HA, et al. Different effects of ketoconazole on the stereoselective first-pass metabolism of R/S-verapamil in the intestine and the liver: important for the mechanistic understanding of first-pass drug-drug interactions. Drug Metabolism Dispos Biol Fate Chem. 2009;37(11):2186–96.CrossRefGoogle Scholar
  15. 15.
    Sjodin E, et al. Intestinal and hepatobiliary transport of ximelagatran and its metabolites in pigs. Drug Metabolism Dispos Biol Fate Chem. 2008;36(8):1519–28.CrossRefGoogle Scholar
  16. 16.
    Simianer H, Kohn F. Genetic management of the Gottingen Minipig population. J Pharmacol Toxicol Methods. 2010;62(3):221–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Nestorov I. Whole-body physiologically based pharmacokinetic models. Expert Opin Drug Metab Toxicology. 2007;3(2):235–49.CrossRefGoogle Scholar
  18. 18.
    Yu LX, et al. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Deliv Rev. 1996;19(3):359–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Parrott N and Lave T. Computer Models for Predicting Drug Absorption, in Oral Drug Absorption, J.B. Dressman and C. Reppas, Editors. 2010, Informa.Google Scholar
  20. 20.
    Suenderhauf C, et al. Combinatorial QSAR modeling of human intestinal absorption. Mol Pharm. 2011;8(1):213–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Amidon GL, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50 Suppl 1:S41–67.PubMedCrossRefGoogle Scholar
  23. 23.
    Thelen K, et al. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci. 2011;100(12):5324–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Willmann S, Edginton AN, Dressman JB. Development and validation of a physiology-based model for the prediction of oral absorption in monkeys. Pharm Res. 2007;24(7):1275–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Thelen K, et al. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part II: extension to describe performance of solid dosage forms. J Pharm Sci. 2012;101(3):1267–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Jamei M, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37.PubMedCrossRefGoogle Scholar
  27. 27.
    Cosgrove D, et al. Quantification of blood flow. Eur Radiol. 2001;11(8):1338–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Levine BA, Sirinek KR, Gaskill 3rd HV. The radiolabeled microsphere technique in gut blood flow measurement–current practice. J Surg Res. 1984;37(3):241–55.PubMedCrossRefGoogle Scholar
  29. 29.
    Rodgers T, Rowland M. Mechanistic approaches to volume of distribution predictions: understanding the processes. Pharm Res. 2007;24(5):918–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.PubMedCrossRefGoogle Scholar
  31. 31.
    Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Haring F, et al. Miniature swine development for laboratory purpose in Proceedings of a symposium on swine in biomedical research. Richland: Battelle Memorial Institute, Pacific Northwest Laboratories Division; 1965.Google Scholar
  33. 33.
    Glodek P, et al. Das Göttinger Minischwein - ein Laboratoriumstier mit weltweiter Bedeutung. Zuchtungskunde. 1977;49:21–32.Google Scholar
  34. 34.
    Glodek P and B Oldigs eds. Das Göttingen Minischwein. ed. P. Glodek and B. Oldigs1981, Paul Parey: Berlin. 32–43 and 75–85.Google Scholar
  35. 35.
    Bollen PJ, et al. Growth differences of male and female Gottingen minipigs during ad libitum feeding: a pilot study. Lab Anim. 2005;39(1):80–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Johansen T, et al. The obese Gottingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp Med. 2001;51(2):150–5.PubMedGoogle Scholar
  37. 37.
    Kohn F, Sharifi AR, Simianer H. Modeling the growth of the Goettingen minipig. J Anim Sci. 2007;85(1):84–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Bollen P, Andersen A, Ellegaard L. The behaviour and housing requirements of minipigs. Scand J Lab Anim Sci. 1998;25(1):23–6.Google Scholar
  39. 39.
    Tsutsumi H. In: McAnulty PA et al., editors. Skeletal System, in The Minipig in Biomedical Research. Boca Raton: CRC Press, Taylor & Francis Group; 2012. p. 33487–2742.Google Scholar
  40. 40.
    Kühn U. Vergleichende anatomische Untersuchungen des Darmtraktes und des darmassoziierten lymphatischen Gewebes (GALT) bei alten Hausschweinerassen und einer modernen Fleischrasse in School Vet. Med. Hannover: Tierärztlichen Hochschule Hannover; 2001.Google Scholar
  41. 41.
    S, K, Auswirkungen der Vermahlungsintensität (grob, fein) und Konfektionierung (schrotförmig, pelletiert) des Mischfutters auf die Milieubedingungen im Mageninhalt von Schweinen, in Tierärztliche Hochschule Hannover 2009, University of Hannover: Hannover. p. 225.Google Scholar
  42. 42.
    Hänichen T. Stomach ulcers in swine. Tierärztliche Praxis. 1975;2:107–91.Google Scholar
  43. 43.
    Bal HS and Ghoshal NG. Histomorphology of the torus pyloricus of the domestic pig (Sus scrofa domestica). Zentralblatt fur Veterinarmedizin. Reihe C: Anatomie, Histologie, Embryologie. 1972;1(4):289–98.Google Scholar
  44. 44.
    Hossain M, et al. Gastrointestinal transit of nondisintegrating, nonerodible oral dosage forms in pigs. Pharm Res. 1990;7(11):1163–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Oberle RL, Das H. Variability in gastric pH and delayed gastric emptying in Yucatan miniature pigs. Pharm Res. 1994;11(4):592–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Schneider JH, et al. Ambulatory pH: monitoring with a wireless system. Surg Endosc. 2007;21(11):2076–80.PubMedCrossRefGoogle Scholar
  47. 47.
    Rerat A. Quantitative measurement of carbohydrate absorption in pigs after ingestion of corn starch. Med Chir Digest. 1975;4 suppl 2:49–51.Google Scholar
  48. 48.
    Ruckenbusch Y, Bueno L. The effect of feeding on the motility of the stomach and small intestine in the pig. Br J Nutr. 1976;35(3):397–405.PubMedCrossRefGoogle Scholar
  49. 49.
    Schubert ML. Gastric exocrine and endocrine secretion. Curr Opin Gastroenterol. 2009;25(6):529–36.PubMedCrossRefGoogle Scholar
  50. 50.
    von Rosenvinge EC, Raufman JP. Gastrointestinal peptides and regulation of gastric acid secretion. Curr Opin Endocrinol Diabetes Obes. 2010;17(1):40–3.Google Scholar
  51. 51.
    C VG. Safety Assessment in the Minipig - Principal Body Systems, in The Minipig in Biomedical Research, P.A. McAnulty, et al., Editors. 2012, CRC Press: Boca Raton, FL 33487-2742. p. 211–236.Google Scholar
  52. 52.
    Köttendorfer S. Auswirkungen der Vermahlungsintensität (grob, fein) und Konfektionierung (schrotförmig, pelletiert) des Mischfutters auf die Milieubedingungen im Mageninhalt von Schweinen, Tierärztliche Hochschule Hannover. 2009, Deutsche Veterinärmedizinische Gesellschaft Service GmbH: Gießen. p. 1–225.Google Scholar
  53. 53.
    Höller H. Untersuchungen über Sekret und Sekretion der Cardiadrüsenzone im Magen des Schweines. Zentralblatt für Veterinärmedizin Reihe A. 1970;17:685–711.PubMedCrossRefGoogle Scholar
  54. 54.
    Köttendorf S. Auswirkungen der Vermahlungsintensität (grob, fein) und Konfektionierung (schrotförmig, pelletiert) des Mischfutters auf die Milieubedingungen im Mageninhalt von Schweinen. Gießen: Deutsche Veterinärmedizinische Gesellschaft Service GmbH; 2009.Google Scholar
  55. 55.
    McLauchlan G, et al. Comparison of gastric body and antral pH: a 24 hour ambulatory study in healthy volunteers. Gut. 1989;30(5):573–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Merchant HA, et al. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2011;42(1–2):3–10.Google Scholar
  57. 57.
    Kurihara-Bergstrom T, et al. Characterization of the Yucatan miniature pig skin and small intestine for pharmaceutical applications. Lab Anim Sci. 1986;36(4):396–9.PubMedGoogle Scholar
  58. 58.
    Adeola O, King DE. Developmental changes in morphometry of the small intestine and jejunal sucrase activity during the first nine weeks of postnatal growth in pigs. J Anim Sci. 2006;84(1):112–8.PubMedGoogle Scholar
  59. 59.
    Snipes RL. Intestinal absorptive surface in mammals of different sizes. Adv Anat Embryol Cell Biol. 1997;138:III–VIII. 1–90.PubMedGoogle Scholar
  60. 60.
    Davis SS, Illum L, Hinchcliffe M. Gastrointestinal transit of dosage forms in the pig. J Pharm Pharmacol. 2001;53(1):33–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Wilfart A, et al. Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. Br J Nutr. 2007;98(1):54–62.PubMedCrossRefGoogle Scholar
  62. 62.
    Dressman JB, Yamada K. Animal models for oral drug absorption. Drugs Pharm Sci. 1991;48:235–66.Google Scholar
  63. 63.
    van Leeuwen P, et al. An animal model to study digesta passage in different compartments the gastro-intestinal tract (GIT) as affected by dietary composition. Curr Nutr Food Sci. 2006;2(1):97–105.CrossRefGoogle Scholar
  64. 64.
    McRorie J, Greenwood-Van Meerveld B, Rudolph C. Characterization of propagating contractions in proximal colon of ambulatory mini pigs. Dig Dis Sci. 1998;43(5):957–63.PubMedCrossRefGoogle Scholar
  65. 65.
    Argenzio RA, Lebo D. Ion transport by the pig colon: effects of theophylline and dietary sodium restriction. Can J Physiol Pharmacol. 1982;60(7):929–35.PubMedCrossRefGoogle Scholar
  66. 66.
    Yasuda K, et al. Cecum is the major degradation site of ingested inulin in young pigs. J Nutr. 2007;137(11):2399–404.PubMedGoogle Scholar
  67. 67.
    Bode G, et al. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods. 2010;62(3):196–220.PubMedCrossRefGoogle Scholar
  68. 68.
    Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Price PS, et al. Modeling interindividual variation in physiological factors used in PBPK models of humans. Crit Rev Toxicol. 2003;33(5):469–503.PubMedGoogle Scholar
  70. 70.
    Wyler F, et al. The Gottinger minipig as a laboratory animal. 5. Communication: cardiac output, its regional distribution and organ blood flow (author's transl). Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie. 1979;175(1):31–6.Google Scholar
  71. 71.
    West GB, Brown JH. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol. 2005;208(Pt 9):1575–92.PubMedCrossRefGoogle Scholar
  72. 72.
    van Essen GJ, et al. Cardiovascular performance of adult breeding sows fails to obey allometric scaling laws. J Anim Sci. 2011;89(2):376–82.PubMedCrossRefGoogle Scholar
  73. 73.
    van Essen GJ, et al. Does cardiovascular performance of modern fattening pigs obey allometric scaling laws? J Anim Sci. 2009;87(6):1991–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Diehl KH, et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 2001;21(1):15–23.PubMedCrossRefGoogle Scholar
  75. 75.
    Holtz W, Kallweit E. In: Glodek P, Oldigs B, editors. Körperbau und Entwicklung (Anatomy and Development), in Das Göttinger Miniaturschwein (The Goettingen Miniature Pig). Berlin: Verlag Paul Parrey; 1981. p. 32–43.Google Scholar
  76. 76.
    Wittsiepe J, et al. Bioavailability of PCDD/F from contaminated soil in young Goettingen minipigs. Chemosphere. 2007;67(9):355–64.CrossRefGoogle Scholar
  77. 77.
    Beglinger R, et al. [The Goettingen miniature swine as an experimental animal. 1. Review of literature, breeding and handling, cardiovascular parameters]. Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie. 1975;165(3):251–63.Google Scholar
  78. 78.
    Monteiro-Riviere NA, Stromberg MW. Ultrastructure of the integument of the domestic pig (Sus scrofa) from one through fourteen weeks of age. Anat Histol Embryol. 1985;14(2):97–115.PubMedCrossRefGoogle Scholar
  79. 79.
    Sharma R, et al. Quantitative imaging of lymph function. Am J Physiol Heart Circ Physiol. 2007;292(6):H3109–18.PubMedCrossRefGoogle Scholar
  80. 80.
    Hammond SA, et al. Transcutaneous immunization of domestic animals: opportunities and challenges. Adv Drug Deliv Rev. 2000;43(1):45–55.PubMedCrossRefGoogle Scholar
  81. 81.
    Makin A, Mortensen JT, Brock WJ. In: McAnulty PA et al., editors. Dermal Toxicity Studies, in The Minipig in Biomedical Research. Boca Raton: CRC Press, Taylor & Francis Group; 2012. p. 186.Google Scholar
  82. 82.
    Qvist MH, et al. Evaluation of Gottingen minipig skin for transdermal in vitro permeation studies. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2000;11(1):59–68.Google Scholar
  83. 83.
    Gschwind HP, et al. Pimecrolimus: skin disposition after topical administration in minipigs in vivo and in human skin in vitro. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2008;33(1):9–19.Google Scholar
  84. 84.
    Zheng Y, et al. Minipig as a potential translatable model for monoclonal antibody pharmacokinetics after intravenous and subcutaneous administration. mAbs. 2012;4(2).Google Scholar
  85. 85.
    Warner RL, McFarland LZ. Integument, in The Beagle as an Experimental Animal 1970, Iowa State University Press. p. 126–148.Google Scholar
  86. 86.
    Quillen EW, Reid IA. Effect of intravertebral angiotensin II on cardiac output and its distribution in conscious dogs. Circ Res. 1988;63(4):702–11.PubMedCrossRefGoogle Scholar
  87. 87.
    Swindle MM. Swine in hte laboratory: surgery, anesthesia, imaging and experimental techniques. 2nd ed. Boca Raton: CRC Press; 2007.CrossRefGoogle Scholar
  88. 88.
    Fujii M, et al. Evaluation of Yucatan micropig skin for use as an in vitro model for skin permeation study. Biol Pharm Bull. 1997;20(3):249–54.PubMedCrossRefGoogle Scholar
  89. 89.
    Bulow J, Madsen J, Hojgaard L. Reversibility of the effects on local circulation of high lipid concentrations in blood. Scand J Clin Lab Investig. 1990;50(3):291–6.CrossRefGoogle Scholar
  90. 90.
    Monteiro-Riviere NA, et al. Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species. J Investig Dermatol. 1990;95(5):582–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Fischer M, et al. Flow velocity of single lymphatic capillaries in human skin. Am J Physiol. 1996;270(1 Pt 2):H358–63.PubMedGoogle Scholar
  92. 92.
    Nathanson SD, Nelson L, Karvelis KC. Rates of flow of technetium 99 m–labeled human serum albumin from peripheral injection sites to sentinel lymph nodes. Ann Surg Oncol. 1996;3(4):329–35.PubMedCrossRefGoogle Scholar
  93. 93.
    Peterbauer-Scherb A, et al. Isolation of pig bone marrow mesenchymal stem cells suitable for one-step procedures in chondrogenic regeneration. J Tissue Eng Regen Med. 2010;4(6):485–90.PubMedGoogle Scholar
  94. 94.
    Schneider T, et al. Dynamic gadolinium-enhanced MRI evaluation of porcine femoral head ischemia and reperfusion. Skeletal Radiol. 2003;32(2):59–65.PubMedCrossRefGoogle Scholar
  95. 95.
    Nakayama F. Composition of gallstone and bile: species difference. Journal Lab Clin Med. 1969;73(4):623–30.Google Scholar
  96. 96.
    Legrand-Defretin V, et al. Ion-pair high-performance liquid chromatography of bile salt conjugates: application to pig bile. Lipids. 1991;26(8):578–83.PubMedCrossRefGoogle Scholar
  97. 97.
    Farthing MJ, Keusch GT, Carey MC. Effects of bile and bile salts on growth and membrane lipid uptake by Giardia lamblia. Possible implications for pathogenesis of intestinal disease. J Clin Investig. 1985;76(5):1727–32.PubMedCrossRefGoogle Scholar
  98. 98.
    Martinez M, et al. Applying the biopharmaceutics classification system to veterinary pharmaceutical products. Part II. Physiological considerations. Adv Drug Deliv Rev. 2002;54(6):825–50.PubMedCrossRefGoogle Scholar
  99. 99.
    Jantratid E, et al. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.PubMedCrossRefGoogle Scholar
  100. 100.
    Jones HM, et al. Predicting pharmacokinetic food effects using biorelevant solubility media and physiologically based modelling. Clin Pharmacokinet. 2006;45(12):1213–26.PubMedCrossRefGoogle Scholar
  101. 101.
    Dalmose AL, et al. Surgically induced urologic models in swine. J Investig Surg Off J Acad Surg Res. 2000;13(3):133–45.CrossRefGoogle Scholar
  102. 102.
    Cibulskyte D, et al. The pharmacokinetics and acute renal effects of oral microemulsion ciclosporin A in normal pigs. Int Immunopharmacol. 2006;6(4):627–34.PubMedCrossRefGoogle Scholar
  103. 103.
    Lodrup AB, et al. The association between renal function and structural parameters: a pig study. BMC Nephrol. 2008;9:18.PubMedCrossRefGoogle Scholar
  104. 104.
    Preusse C, Skaanild MT. In: McAnulty PA et al., editors. Minipigs in Absorption, Distribution, Metabolism, and Excretion (ADME) Studies, in The Minipig in Biomedical Research. Boca Raton: CRC Press, Tylor &Francis Group; 2012. p. 143–58.Google Scholar
  105. 105.
    Hagos Y, et al. Functional expression of pig renal organic anion transporter 3 (pOAT3). Biochimie. 2005;87(5):421–4.PubMedCrossRefGoogle Scholar
  106. 106.
    Hagos Y, et al. Cloning of the pig renal organic anion transporter 1 (pOAT1). Biochimie. 2002;84(12):1221–4.PubMedCrossRefGoogle Scholar
  107. 107.
    Giacomini KM, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.PubMedCrossRefGoogle Scholar
  108. 108.
    Goh LB, et al. Endogenous drug transporters in in vitro and in vivo models for the prediction of drug disposition in man. Biochem Pharmacol. 2002;64(11):1569–78.PubMedCrossRefGoogle Scholar
  109. 109.
    Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007;6(2):140–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Achour B, Barber J, Rostami-Hodjegan A. Cytochrome p450 pig liver pie: determination of individual cytochrome p450 isoform contents in microsomes from two pig livers using liquid chromatography in conjunction with mass spectroscopy. Drug Metabolism Dispos Biol Fate Chem. 2011;39(11):2130–4.CrossRefGoogle Scholar
  111. 111.
    Anzenbacherova, E., et al., Minipig as a model for drug metabolism in man: comparison of in vitro and in vivo metabolism of propafenone. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2003;147(2): 155–9.Google Scholar
  112. 112.
    Skaanild MT. Porcine cytochrome P450 and metabolism. Curr Pharm Des. 2006;12(11):1421–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Nebbia C, et al. Comparative expression of liver cytochrome P450-dependent monooxygenases in the horse and in other agricultural and laboratory species. Vet J. 2003;165(1):53–64.PubMedCrossRefGoogle Scholar
  114. 114.
    Myers MJ, et al. Identification of multiple constitutive and inducible hepatic cytochrome P450 enzymes in market weight swine. Drug Metabolism Dispos Biol Fate Chem. 2001;29(6):908–15.Google Scholar
  115. 115.
    Shimada T, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270(1):414–23.PubMedGoogle Scholar
  116. 116.
    Skaanild MT, Friis C. Cytochrome P450 sex differences in minipigs and conventional pigs. Pharmacol Toxicol. 1999;85(4):174–80.PubMedCrossRefGoogle Scholar
  117. 117.
    Bogaards JJ, et al. Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica Fate Foreign Compd Biol Syst. 2000;30(12):1131–52.CrossRefGoogle Scholar
  118. 118.
    Skaanild MT, Friis C. Analyses of CYP2C in porcine microsomes. Basic Clin Pharmacol Toxicol. 2008;103(5):487–92.PubMedCrossRefGoogle Scholar
  119. 119.
    Anzenbacher P, et al. Presence and activity of cytochrome P450 isoforms in minipig liver microsomes. Comparison with human liver samples. Drug Metabolism Dispos Biol Fate Chem. 1998;26(1):56–9.Google Scholar
  120. 120.
    Puccinelli E, et al. Expression and inducibility by phenobarbital of CYP2C33, CYP2C42, CYP2C49, CYP2B22, and CYP3As in porcine liver, kidney, small intestine, and nasal tissues. Xenobiotica Fate Foreign Compd Biol Syst. 2010;40(8):525–35.CrossRefGoogle Scholar
  121. 121.
    Ioannides C. Cytochrome p450 expression in the liver of food-producing animals. Curr Drug Metab. 2006;7(4):335–48.PubMedCrossRefGoogle Scholar
  122. 122.
    Puccinelli E, Gervasi PG, Longo V. Xenobiotic metabolizing cytochrome P450 in pig, a promising animal model. Curr Drug Metab. 2011;12(6):507–25.PubMedGoogle Scholar
  123. 123.
    Skaanild MT, Friis C. Is cytochrome P450 CYP2D activity present in pig liver? Pharmacol Toxicol. 2002;91(4):198–203.PubMedCrossRefGoogle Scholar
  124. 124.
    Hosseinpour F, Wikvall K. Porcine microsomal vitamin D(3) 25-hydroxylase (CYP2D25). Catalytic properties, tissue distribution, and comparison with human CYP2D6. J Biol Chem. 2000;275(44):34650–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Anzenbacherova E, et al. Model systems based on experimental animals for studies on drug metabolism in man: (mini)pig cytochromes P450 3A29 and 2E1. Basic Clin Pharmacol Toxicol. 2005;96(3):244–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Nishi K, et al. The expression of intestinal CYP3A4 in the piglet model. Transplant Proc. 2004;36(2):361–3.PubMedCrossRefGoogle Scholar
  127. 127.
    Marini S, et al. Xenobiotic-metabolizing enzymes in pig nasal and hepatic tissues. Xenobiotica Fate Foreign Compd Biol Syst. 1998;28(10):923–35.CrossRefGoogle Scholar
  128. 128.
    Oberle RL, et al. Pharmacokinetics and metabolism of diclofenac sodium in Yucatan miniature pigs. Pharm Res. 1994;11(5):698–703.PubMedCrossRefGoogle Scholar
  129. 129.
    Thorn HA, et al. Extensive intestinal glucuronidation of raloxifene in vivo in pigs and impact for oral drug delivery. Xenobiotica Fate Foreign Compd Biol Syst, 2012.Google Scholar
  130. 130.
    Heading RC, et al. The dependence of paracetamol absorption on the rate of gastric emptying. Br J Pharmacol. 1973;47(2):415–21.PubMedCrossRefGoogle Scholar
  131. 131.
    Clements JA, et al. Kinetics of acetaminophen absorption and gastric emptying in man. Clin Pharmacol Ther. 1978;24(4):420–31.PubMedGoogle Scholar
  132. 132.
    Siefert HM, et al. Pharmacokinetics of the 8-methoxyquinolone, moxifloxacin: a comparison in humans and other mammalian species. J Antimicrob Chemother. 1999;43(Suppl B):69–76.PubMedCrossRefGoogle Scholar
  133. 133.
    Aoyagi N, et al. Bioavailability of griseofulvin from plain tablets in Gottingen minipigs and the correlation with bioavailability in humans. J Pharmacobio-dynamics. 1984;7(1):7–14.CrossRefGoogle Scholar
  134. 134.
    Rodgers T, Leahy D, Rowland M. Tissue distribution of basic drugs: accounting for enantiomeric, compound and regional differences amongst beta-blocking drugs in rat. J Pharm Sci. 2005;94(6):1237–48.PubMedCrossRefGoogle Scholar
  135. 135.
    Beckmann J, et al. Tissue concentrations of vancomycin and Moxifloxacin in periprosthetic infection in rats. Acta orthopaedica. 2007;78(6):766–73.PubMedCrossRefGoogle Scholar
  136. 136.
    Sobue S, Sekiguchi K, Nabeshima T. Intracutaneous distributions of fluconazole, itraconazole, and griseofulvin in Guinea pigs and binding to human stratum corneum. Antimicrob Agents Chemother. 2004;48(1):216–23.PubMedCrossRefGoogle Scholar
  137. 137.
    Takano R, et al. Oral absorption of poorly water-soluble drugs: computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm Res. 2006;23(6):1144–56.PubMedCrossRefGoogle Scholar
  138. 138.
    Fujioka Y, et al. Prediction of oral absorption of griseofulvin, a BCS class II drug, based on GITA model: utilization of a more suitable medium for in-vitro dissolution study. J Control Release Off J Control Release Soc. 2007;119(2):222–8.CrossRefGoogle Scholar
  139. 139.
    Lin C, Symchowicz S. Absorption, distribution, metabolism, and excretion of griseofulvin in man and animals. Drug Metab Rev. 1975;4(1):75–95.PubMedCrossRefGoogle Scholar
  140. 140.
    Mosharraf M, Nystrom C. The effect of dry mixing on the apparent solubility of hydrophobic, sparingly soluble drugs. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 1999;9(2):145–56.Google Scholar
  141. 141.
    Rowland M, Riegelman S, Epstein WL. Absorption kinetics of griseofulvin in man. J Pharm Sci. 1968;57(6):984–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Bates TR, Gibaldi M, Kanig JL. Solubilizing properties of bile salt solutions. II. Effect of inorganic electrolyte, lipids, and a mixed bile salt system on solubilization of glutethimide, griseofulvin, and hexestrol. J Pharm Sci. 1966;55(9):901–6.PubMedCrossRefGoogle Scholar
  143. 143.
    DeSesso JM, Williams AL. In: Macor JE, editor. Contrasting the gastrointestinal tracts of mammals: factors that influence absorption, in annual reports in medicinal chemistry. The Netherlands: Academic; 2008. p. 353–71.Google Scholar
  144. 144.
    Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16(5):351–80.PubMedCrossRefGoogle Scholar
  145. 145.
    Treacy PJ, Jamieson GG, Dent J. Pyloric motor function during emptying of a liquid meal from the stomach in the conscious pig. J Physiol. 1990;422:523–38.PubMedGoogle Scholar
  146. 146.
    Lui CY, et al. Comparison of gastrointestinal pH in dogs and humans: implications on the use of the beagle dog as a model for oral absorption in humans. J Pharm Sci. 1986;75(3):271–4.PubMedCrossRefGoogle Scholar
  147. 147.
    Hernot DC, et al. Evaluation of association between body size and large intestinal transit time in healthy dogs. Am J Vet Res. 2006;67(2):342–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Adkin DA, et al. The effects of pharmaceutical excipients on small intestinal transit. Br J Clin Pharmacol. 1995;39(4):381–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Graff J, Brinch K, Madsen JL. Gastrointestinal mean transit times in young and middle-aged healthy subjects. Clin Physiol. 2001;21(2):253–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Bahr R, Flach A. Morphological and functional adaptation after massive resection of the small intestine: experiments using minipigs of the Gottingen strain. Prog Pediatr Surg. 1978;12:107–42.PubMedGoogle Scholar
  151. 151.
    Snyder WS, et al. eds. Report of the Task Group on Reference Man. ICRP publication1975, Pergamon Press: New York.Google Scholar
  152. 152.
    Buur JL, et al. Development of a physiologic-based pharmacokinetic model for estimating sulfamethazine concentrations in swine and application to prediction of violative residues in edible tissues. Am J Vet Res. 2005;66(10):1686–93.PubMedCrossRefGoogle Scholar
  153. 153.
    Upton RN. Organ weights and blood flows of sheep and pig for physiological pharmacokinetic modelling. J Pharmacol Toxicol Methods. 2008;58(3):198–205.PubMedCrossRefGoogle Scholar
  154. 154.
    Duddy J, et al. Physiological model for distribution of sulfathiazole in swine. J Pharm Sci. 1984;73(11):1525–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Phuc BHN, Hieu LT. "A" molasses in diets for growing pigs. Livest Res Rural Dev. 1993;2(3):75–8.Google Scholar
  156. 156.
    van Woerkens LJ, et al. Effect of epinine on systemic hemodynamics and regional blood flow in conscious pigs. J Cardiovasc Pharmacol. 1992;19(4):580–6.PubMedCrossRefGoogle Scholar
  157. 157.
    Lundeen G, Manohar M, Parks C. Systemic distribution of blood flow in swine while awake and during 1.0 and 1.5 MAC isoflurane anesthesia with or without 50% nitrous oxide. Anesth Analg. 1983;62(5):499–512.PubMedCrossRefGoogle Scholar
  158. 158.
    Carceles CM, et al. Pharmacokinetics and milk penetration of moxifloxacin after intramuscular administration to lactating goats. Vet J. 2007;173(2):452–5.PubMedCrossRefGoogle Scholar
  159. 159.
    SimulationsPlus, ADMET PredictorTM manual, 2010a.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.F. Hoffmann-La Roche Ltd., Pharmaceuticals DivisionNon-Clinical SafetyBaselSwitzerland
  2. 2.F. Hoffmann-La Roche Ltd., Pharmaceuticals DivisionNon-Clinical SafetyBaselSwitzerland

Personalised recommendations