Pharmaceutical Research

, Volume 30, Issue 2, pp 435–446 | Cite as

Squalene-Containing Nanostructured Lipid Carriers Promote Percutaneous Absorption and Hair Follicle Targeting of Diphencyprone for Treating Alopecia Areata

  • Yin-Ku Lin
  • Saleh A. Al-Suwayeh
  • Yann-Lii Leu
  • Feng-Ming Shen
  • Jia-You Fang
Research Paper

Abstract

Purpose

Diphencyprone (DPCP) is a therapeutic agent for treating alopecia areata. To improve skin absorption and follicular targeting nanostructured lipid carriers (NLCs) were developed.

Methods

Nanoparticles were characterized by size, zeta potential, molecular environment, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). In vitro and in vivo skin absorption experiments were performed. Fluorescence and confocal microscopes for imaging skin distribution were used.

Results

NLCs with different designs were 208 ~ 265 nm with  > 77% DPCP encapsulation. NLCs incorporating a cationic surfactant or more soybean phosphatidylcholine (SPC) showed higher lipophilicity compared to typical NLCs by Nile red emission. All NLCs tested revealed controlled DPCP release; burst release was observed for control. The formulation with more SPC provided 275 μg/g DPCP skin retention, which was greater than control and other NLCs. Intersubject deviation was reduced after DPCP loading into NLCs. Cyanoacrylate skin biopsy demonstrated greater follicular deposition for NLCs with more SPC compared to control. Cationic NLCs but not typical or SPC-containing carriers were largely internalized into keratinocytes. In vivo skin retention of NLCs with more SPC was higher than free control. Confocal imaging confirmed localization of NLCs in follicles and intercellular lipids of stratum corneum.

Conclusions

This work encourages further investigation of DPCP absorption using NLCs with a specific formulation design.

KEY WORDS

alopecia areata diphencyprone hair follicles nanostructured lipid carriers percutaneous absorption 

References

  1. 1.
    MacDonald Hull SP, Wood ML, Hutchinson PE, Sladden M, Messenger AG. Guidelines for the management of alopecia areata. Br J Dermatol. 2003;149:692–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Pazoki-Toroudi H, Ajami M, Babakoohi S, Khaki L, Habibey R, Akhiani M, et al. Effects of diphencyprone on expression of Bcl-2 protein in patients with alopecia areata. Immunopharmacol Immunotoxicol. 2010;32:422–5.PubMedCrossRefGoogle Scholar
  3. 3.
    El-Zawahry BM, Bassiouny DA, Khella A, Zaki NS. Five-year experience in the treatment of alopecia areata with DPC. J Eur Acad Dermatol Venereol. 2010;24:264–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Avgerinou G, Gregoriou S, Rigopoulos D, Stratigos A, Kalogeromitros D, Katsambas A. Alopecia areata: topical immunotherapy treatment with diphencyprone. J Eur Acad Dermatol Venereol. 2008;22:320–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Alkhalifah A, Alsantali A, Wang E, McElwee KJ, Shapiro J. Alopecia areata update. Part II. Treatment. J Am Acad Dermatol. 2010;62:191–202.PubMedCrossRefGoogle Scholar
  6. 6.
    Pires MC, Martins JM, Montealegre F, Gatti FR. Vitiligo after diphencyprone for alopecia areata. Dermatol Res Pract. 2010;2010:171265.PubMedGoogle Scholar
  7. 7.
    Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.PubMedCrossRefGoogle Scholar
  8. 8.
    González-Mira E, Nikolić S, García ML, Egea MA, Souto EB, Calpena AC. Potential use of nanostructured lipid carriers for topical delivery of flurbiprofen. J Pharm Sci. 2011;100:242–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Wiseman MC, Shapiro J, MacDonald N, Lui H. Predictive model for immunotherapy of alopecia areata with diphencyprone. Arch Dermatol. 2001;137:1063–8.PubMedGoogle Scholar
  10. 10.
    Puglia C, Bonina F, Rizza L, Blasi P, Schoubben A, Perrotta R, et al. Lipid nanoparticles as carrier for octyl-methoxycinnamate: in vitro percutaneous absorption and photostability studies. J Pharm Sci. 2012;101:301–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 2007;127:1701–12.PubMedGoogle Scholar
  12. 12.
    Zhang LW, Monteiro-Riviere NA. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol Physiol. 2008;21:166–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Teichmann A, Jacobi U, Ossadnik M, Richter H, Koch S, Sterry W, et al. Differential stripping: determination of the amount of topically applied substances penetrated into the hair follicles. J Invest Dermatol. 2005;125:264–9.PubMedGoogle Scholar
  14. 14.
    Betz G, Imboden R, Imanidis G. Interaction of liposome formulations with human skin in vitro. Int J Pharm. 2001;229:117–29.PubMedCrossRefGoogle Scholar
  15. 15.
    Wen CJ, Zhang LW, Al-Suwayeh SA, Yen TC, Fang JY. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomed. 2012;7:1599–611.Google Scholar
  16. 16.
    Hsu SH, Wen CJ, Al-Suwayeh SA, Chang HW, Yen TC, Fang JY. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers (NLCs) for targeting the brain: apomorphine as a model drug. Nanotechnology. 2010;21:405101.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen H, Chang X, Du D, Liu W, Liu J, Weng T, et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Contr Rel. 2006;110:296–306.CrossRefGoogle Scholar
  18. 18.
    Zimmermann E, Müller RH. Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN®) dispersions in artificial gastrointestinal media. Eur J Pharm Biopharm. 2001;52:203–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Müller RH, Runge SA, Ravelli V, Thünemann AF, Mehnert W, Souto EB. Cyclosporine-loaded solid lipid nanoparticles (SLN®): drug-lipid physicochemical interactions and characterization of drug incorporation. Eur J Pharm Biopharm. 2008;68:535–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang JJ, Liu KS, Sung KC, Tsai CY, Fang JY. Lipid nanoparticles with different oil/fatty ester ratios as carriers of buprenorphine and its prodrugs for injection. Eur J Pharm Sci. 2009;38:138–46.PubMedCrossRefGoogle Scholar
  21. 21.
    Schubert MA, Harms M, Müller-Goymann CC. Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur J Pharm Sci. 2006;27:226–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Happle R. Diphencyprone for the treatment of alopecia areata: more data and new aspects. Arch Dermatol. 2002;138:112–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Latendresse JR, et al. Quantitative determination of skin penetration of PEG-coated CdSe quantum dots in dermabraded but not intact SKH-1 hairless mouse skin. Toxicol Sci. 2009;111:37–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Baroli B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J Pharm Sci. 2010;99:21–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Lombardi Borgia S, Regehly M, Sivaramakrishnan R, Mehnert W, Korting HC, Danker K, et al. Lipid nanoparticles for skin penetration enhancement–correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J Contr Rel. 2005;110:151–63.CrossRefGoogle Scholar
  26. 26.
    Schäfer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59:427–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol. 2010;27:247–59.PubMedCrossRefGoogle Scholar
  28. 28.
    Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang JJ, Liu KS, Sung KC, Tsai CY, Fang JY. Skin permeation of buprenorphine and its ester prodrugs from lipid nanoparticles: lipid emulsion, nanostructured lipid carriers, and solid lipid nanoparticles. J Microencapsul. 2009;26:734–47.PubMedCrossRefGoogle Scholar
  30. 30.
    Abdel-Mottaleb MMA, Neumann D, Lamprecht A. Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur J Pharm Biopharm. 2011;79:36–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu KS, Wen CJ, Yen TC, Sung KC, Ku MC, Wang JJ, et al. Combined strategies of apomorphine diester prodrugs and nanostructured lipid carriers (NLCs) for efficient brain targeting. Nanotechnology. 2012;23:095103.PubMedCrossRefGoogle Scholar
  32. 32.
    Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A. Follicular transport route–research progress and future perspectives. Eur J Pharm Biopharm. 2009;71:173–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Jung S, Patzelt A, Otberg N, Thiede G, Sterry W, Lademann J. Strategy of topical vaccination with nanoparticles. J Biomed Opt. 2009;14:021001.PubMedCrossRefGoogle Scholar
  34. 34.
    Messenger AG. Alopecia areata. Eur J Dermatol. 2006;16:537–42.Google Scholar
  35. 35.
    Küchler S, Radowski MR, Blaschke T, Dathe M, Plendl J, Haag R, et al. Nanoparticles for skin penetration enhancement–a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm. 2009;71:243–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66:2873–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Lu W, Sun Q, Wan J, She Z, Jiang XG. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 2006;66:11878–87.PubMedCrossRefGoogle Scholar
  38. 38.
    Lv Q, Yu A, Xi Y, Li H, Song Z, Cui J, et al. Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm. 2009;372:191–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Alvarez-Román R, Naik YN, Fessi H, Guy RH. Visualization of skin penetration using confocal laser scanning microscopy. Eur J Pharm Biopharm. 2004;58:301–16.PubMedCrossRefGoogle Scholar
  40. 40.
    Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol. 2004;122:14–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Frum Y, Bonner MC, Eccleston GM, Meidan VM. The influence of drug partition coefficient on follicular penetration: in vitro human skin studies. Eur J Pharm Sci. 2007;30:280–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Trauer S, Patzelt A, Otberg N, Knorr F, Rozycki C, Balizs G, et al. Permeation of topically applied caffeine through human skin–a comparison of in vivo and in vitro data. Br J Clin Pharmacol. 2009;68:181–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yin-Ku Lin
    • 1
    • 2
  • Saleh A. Al-Suwayeh
    • 3
  • Yann-Lii Leu
    • 4
  • Feng-Ming Shen
    • 5
    • 6
  • Jia-You Fang
    • 5
    • 7
  1. 1.School of Traditional Chinese MedicineChang Gung UniversityKweishanTaiwan
  2. 2.Department of Traditional Chinese MedicineChang Gung Memorial HospitalKeelungTaiwan
  3. 3.Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Natural Products Laboratory, Graduate Institute of Natural ProductsChang Gung UniversityKweishanTaiwan
  5. 5.Pharmaceutics Laboratory, Graduate Institute of Natural ProductsChang Gung UniversityKweishanTaiwan
  6. 6.Chinese Herbal Medicine Research Team Healthy Aging Research CenterChang Gung UniversityKweishanTaiwan
  7. 7.Department of Cosmetic ScienceChang Gung University of Science & TechnologyKweishanTaiwan

Personalised recommendations