Pharmaceutical Research

, Volume 29, Issue 9, pp 2419–2431 | Cite as

Dynamic Analysis of GI Absorption and Hepatic Distribution Processes of Telmisartan in Rats Using Positron Emission Tomography

  • Makoto Kataoka
  • Tadayuki Takashima
  • Tomotaka Shingaki
  • Yoshinobu Hashidzume
  • Yumiko Katayama
  • Yasuhiro Wada
  • Hiroyuki Oh
  • Yoshie Masaoka
  • Shinji Sakuma
  • Yuichi Sugiyama
  • Shinji YamashitaEmail author
  • Yasuyoshi Watanabe
Research Paper



To dynamically analyze the processes of oral absorption and hepatobiliary distribution of telmisartan using positron emission tomography (PET).


11C-labeled telmisartan ([11C]TEL) was orally administered to rats with or without non-radiolabeled telmisartan (0.5, and 10 mg/kg). PET scanning of abdominal region and whole body was performed under conscious condition. In situ intestinal closed loop study in rats and in vitro permeation study in MDR1-MDCK II cell monolayers were also conducted.


After oral administration of [11C]TEL, systemic bioavailability and hepatic distribution of radioactivity increased non-linearly with dose. In the intestinal lumen, both telmisartan and its glucuronide were detected and the ratio of telmisartan decreased dramatically at high dose of telmisartan. In situ closed loop study showed most of telmisartan-glucuronide detected in the intestinal lumen was derived from the bile excretion. In addition, in vitro permeation study revealed that telmisartan is a substrate of P-glycoprotein.


PET imaging analysis successfully demonstrated the processes of intestinal absorption and hepatic distribution of telmisartan. PET study combined with appropriate in situ and in vitro experiments is highly expected to be a potent tool for better understanding of GI absorption and subsequent tissue distribution of various drugs and drug candidates.


molecular imaging oral absorption positron emission tomography (PET) telmisartan transporter 


  1. 1.
    Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Meth. 2000;44(1):235–49.CrossRefGoogle Scholar
  2. 2.
    Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Ofer M, Wolffram S, Koggel A, Spahn-Langguth H, Langguth P. Modulation of drug transport by selected flavonoids: involvement of P-gp and OCT? Eur J Pharm Sci. 2005;25(2–3):263–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Kato Y, Miyazaki T, Kano T, Sugiura T, Kubo Y, Tsuji A. Involvement of influx and efflux transport systems in gastrointestinal absorption of celiprolol. J Pharm Sci. 2009;98(7):2529–39.PubMedCrossRefGoogle Scholar
  5. 5.
    McClellan KJ, Markham A. Telmisartan. Drugs. 1998;56(6):1039–44. discussion 1045–1046.PubMedCrossRefGoogle Scholar
  6. 6.
    Stangier J, Su CA, Roth W. Pharmacokinetics of orally and intravenously administered telmisartan in healthy young and elderly volunteers and in hypertensive patients. J Int Med Res. 2000;28(4):149–67.PubMedGoogle Scholar
  7. 7.
    Lo MW, Goldberg MR, McCrea JB, Lu H, Furtek CI, Bjornsson TD. Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans. Clin Pharmacol Ther. 1995;58(6):641–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Waldmeier F, Flesch G, Müller P, Winkler T, Kriemler HP, Bühlmayer P, De Gasparo M. Pharmacokinetics, disposition and biotransformation of [14C]-radiolabelled valsartan in healthy male volunteers after a single oral dose. Xenobiotica. 1997;27(1):59–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Stangier J, Schmid J, Türck D, Switek H, Verhagen A, Peeters PA, van Marle SP, Tamminga WJ, Sollie FA, Jonkman JH. Absorption, metabolism, and excretion of intravenously and orally administered [14C]telmisartan in healthy volunteers. J Clin Pharmacol. 2000;40(12 Pt 1):1312–22.PubMedGoogle Scholar
  10. 10.
    Ishiguro N, Maeda K, Kishimoto W, Saito A, Harada A, Ebner T, Roth W, Igarashi T, Sugiyama Y. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metabol Dispos. 2006;34(7):1109–15.CrossRefGoogle Scholar
  11. 11.
    Ishiguro N, Maeda K, Saito A, Kishimoto W, Matsushima S, Ebner T, Roth W, Igarashi T, Sugiyama Y. Establishment of a set of double transfectants coexpressing organic anion transporting polypeptide 1B3 and hepatic efflux transporters for the characterization of the hepatobiliary transport of telmisartan acylglucuronide. Drug Metab Dispos. 2008;36(4):796–805.PubMedCrossRefGoogle Scholar
  12. 12.
    Nagata Y, Yamamoto K, Hiraoka M, Abe M, Takahashi M, Akuta K, Nishimura Y, Jo S, Masunaga S, Kubo S, et al. Monitoring liver tumor therapy with [18F]FDG positron emission tomography. J Comput Assist Tomogr. 1990;14(3):370–4.PubMedGoogle Scholar
  13. 13.
    Bares R, Klever P, Hauptmann S, Hellwig D, Fass J, Cremerius U, Schumpelick V, Mittermayer C, Büll U. F-18 fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology. 1994;192(1):79–86.PubMedGoogle Scholar
  14. 14.
    Elsinga PH, Hendrikse NH, Bart J, Vaalburg W, van Waarde A. PET Studies on P-glycoprotein function in the blood–brain barrier: how it affects uptake and binding of drugs within the CNS. Curr Pharm Des. 2004;10(13):1493–503.PubMedCrossRefGoogle Scholar
  15. 15.
    Yamashita S, Takashima T, Kataoka M, Oh H, Sakuma S, Takahashi M, Suzuki N, Hayashinaka E, Wada Y, Cui Y, Watanabe Y. Imaging of gastrointestinal absorption process of orally administered drugs using positron emission tomography. J Nucl Med. 2010;52(2):249–56.CrossRefGoogle Scholar
  16. 16.
    Långström B, Antoni G, Gullberg P, Halldin C, Malmborg P, Någren K, Rimland A, Svärd H. Synthesis of L- and D-[methyl-11C]methionine. J Nucl Med. 1987;28(6):1037–40.PubMedGoogle Scholar
  17. 17.
    Ferrieri RA, Garcia I, Fowler JS, Wolf AP. Investigations of acetonitrile solvent cluster formation in supercritical carbon dioxide, and its impact on microscale syntheses of carbon-11-labeled radiotracers for PET. Nucl Med Biol. 1999;26(4):443–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Takashima T, Hashizume Y, Katayama Y, Murai M, Wada Y, Maeda K, Sugiyama Y, Watanabe Y. The involvement of organic anion transporting polypeptide in the hepatic uptake of telmisartan in rats: PET studies with [(11)C]Telmisartan. Mol Pharm. 2011;8(5):1789–98.PubMedCrossRefGoogle Scholar
  19. 19.
    Fagerholm U, Lindahl A, Lennernäs H. Regional intestinal permeability in rats of compounds with different physicochemical properties and transport mechanisms. J Pharm Pharmacol. 1997;49(7):687–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Stangier J, Su CA, Schöndorfer G, Roth W. Pharmacokinetics and safety of intravenous and oral telmisartan 20 mg and 120 mg in subjects with hepatic impairment compared with healthy volunteers. J Clin Pharmacol. 2000;40(12 Pt 1):1355–64.PubMedGoogle Scholar
  21. 21.
    Wienen W, Entzeroth M, Van Meel JCA, Stangier J, Busch U, Ebner T, Schmid J, Lehmann H, Matzek K, Kempthorne-Rawson J, Gladigau V, Hauel NH. A review on telmisartan: a novel long-acting angiotensin II-receptor antagonist. Cardiovasc Drug Rev. 2000;18(2):127–56.CrossRefGoogle Scholar
  22. 22.
    Kamiyama E, Nakai D, Mikkaichi T, Okudaira N, Okazaki O. Interaction of angiotensin II type 1 receptor blockers with P-gp substrates in Caco-2 cells and hMDR1-expressing membranes. Life Sci. 2010;86(1–2):52–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Weiss J, Sauer A, Divac N, Herzog M, Schwedhelm E, Böger RH, Haefeli WE, Benndorf RA. Interaction of angiotensin receptor type 1 blockers with ATP-binding cassette transporters. Biopharm Drug Dispos. 2010;31(2–3):150–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Guo X, Chen XP, Cheng ZN, Luo X, Guo R, Chen L, Chen J, Chen B, Peng J, Li YJ. No effect of MDR1 C3435T polymorphism on oral pharmacokinetics of telmisartan in 19 healthy Chinese male subjects. Clin Chem Lab Med. 2009;47(1):38–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Miura M, Satoh S, Inoue K, Saito M, Habuchi T, Suzuki T. Telmisartan pharmacokinetics in Japanese renal transplant recipients. Clin Chim Acta. 2009;399(1–2):83–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Nishino A, Kato Y, Igarashi T, Sugiyama Y. Both cMOAT/MRP2 and another unknown transporter(s) are responsible for the biliary excretion of glucuronide conjugate of the nonpeptide angiotensin II antagonist, telmisaltan. Drug Metab Dispos. 2000;28(10):1146–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Makoto Kataoka
    • 1
    • 2
  • Tadayuki Takashima
    • 1
  • Tomotaka Shingaki
    • 1
    • 3
  • Yoshinobu Hashidzume
    • 1
  • Yumiko Katayama
    • 1
  • Yasuhiro Wada
    • 1
  • Hiroyuki Oh
    • 2
  • Yoshie Masaoka
    • 2
  • Shinji Sakuma
    • 2
  • Yuichi Sugiyama
    • 4
  • Shinji Yamashita
    • 2
    Email author
  • Yasuyoshi Watanabe
    • 1
  1. 1.RIKEN Center for Molecular Imaging ScienceKobeJapan
  2. 2.Faculty of Pharmaceutical SciencesSetsunan UniversityHirakataJapan
  3. 3.ADME Research Inc.MinohJapan
  4. 4.Graduate School of Pharmaceutical SciencesThe University of TokyoBunkyo-kuJapan

Personalised recommendations