Pharmaceutical Research

, Volume 29, Issue 10, pp 2754–2765 | Cite as

Molecular Weight Effects on the Miscibility Behavior of Dextran and Maltodextrin with Poly(vinylpyrrolidone)

Research Paper

Abstract

Purpose

To characterize and interpret the miscibility of dextran and maltodextrin with poly(vinylpyrrolidone) (DEX-PVP) as a function of polymer molecular weights.

Methods

Blend miscibility was studied using 4 different molecular weight (MW) grades of DEX combined with 5 MW grades of PVP, over a broad compositional range. Miscibility was evaluated by inspection of glass transition events measured by differential scanning calorimetry (DSC). Fourier transform mid-infrared spectroscopy (FTIR), combined with curve fitting, was performed to characterize the extent of hydrogen bonding. The observed miscibility behavior was further interpreted in terms of mixing thermodynamics.

Results

Miscibility of the blends ranged from fully miscible to completely immiscible with multiple partially miscible systems observed. Increasing polymer molecular weight decreased miscibility. For the lowest DEX grade, hydrogen bonding was independent of PVP MW, as expected since all systems were completely miscible. Higher molecular weights of DEX resulted in reduced intermolecular hydrogen bonding and decreased miscibility, increasingly so for higher MW PVP grades. Evaluation of the mixing thermodynamics supported these findings.

Conclusions

With higher combined molecular weights of DEX-PVP blends, phase behavior evolves from completely miscible to virtually immiscible. Concurrently, DEX-PVP hydrogen bonding decreases. From a thermodynamic perspective, the combinatorial mixing entropy was observed to decrease as the molecular weight of the polymers increased, providing a reduced counterbalance to the unfavorable mixing enthalpy thought to accompany this polymer combination.

Key Words

dextran differential scanning calorimetry (DSC) maltodextrin mid infrared spectroscopy miscibility molecular weight phase separation poly(vinylpyrrolidone) 

Supplementary material

11095_2012_689_MOESM1_ESM.doc (1.3 mb)
ESM 1(DOC 1.28 mb)

References

  1. 1.
    Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Van Eerdenbrugh B, Taylor LS. Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. Mol Pharmaceutics. 2010;7(4):1328–37.CrossRefGoogle Scholar
  3. 3.
    Van Eerdenbrugh B, Taylor LS. An ab initio polymer selection methodology to prevent crystallization in amorphous solid dispersions by application of crystal engineering principles. CrystEngComm. 2011;13(20):6171–78.Google Scholar
  4. 4.
    Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Delivery Rev. doi:10.1016/j.addr.2011.07.009.
  5. 5.
    Randolph TW. Phase separation of excipients during lyophilization: effects on protein stability. J Pharm Sci. 1997;86(1):1198–203.PubMedCrossRefGoogle Scholar
  6. 6.
    Utracki LA. Glass transition temperature in polymer blends. Adv Polym Technol. 1985;5:33–9.CrossRefGoogle Scholar
  7. 7.
    Newman A, Engers D, Bates S, Ivanisevic I, Kelly RC, Zografi G. Characterization of amorphous API:polymer mixtures using X-ray powder diffraction. J Pharm Sci. 2008;97:4840–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Rumondor ACF, Marsac PJ, Stanford LA, Taylor LS. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharmaceutics. 2009;6(5):1492–505.CrossRefGoogle Scholar
  9. 9.
    Marsac PJ, Rumondor ACF, Nivens DE, Kestur US, Stanciu L, Taylor LS. Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). J Pharm Sci. 2010;99(1):169–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Rumondor ACF, Ivanisevic I, Bates S, Alonzo DE, Taylor LS. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res. 2009;26(11):2523–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Ivanisevic I, Bates S, Chen P. Novel methods for the assessment of miscibility of amorphous drug-polymer dispersions. J Pharm Sci. 2009;98(9):3373–86.PubMedCrossRefGoogle Scholar
  12. 12.
    Padilla AM, Ivanisevic I, Yang YL, Engers D, Bogner RH, Pikal MJ. The study of phase separation in amorphous freeze-dried systems. part I: Raman mapping and computational analysis of XRPD data in model polymer systems. J Pharm Sci. 2011;100(1):206–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Qi S, Belton P, Nollenberger K, Clayden N, Reading M, Craig DQM. Characterisation and prediction of phase separation in hot-melt extruded solid dispersions: a thermal, microscopic and NMR relaxometry study. Pharm Res. 2010;27(9):1869–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Aso Y, Yoshioka S, Miyazaki T, Kawanishi T, Tanaka K, Kitamura S, Takakura A, Hayashi T, Muranushi N. Miscibility of nifedipine and hydrophilic polymers as measured by H-1-NMR spin-lattice relaxation. Chem Pharm Bull. 2007;55(8):1227–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Pham TN, Watson SA, Edwards AJ, Chavda M, Clawson JS, Strohmeier M, Vogt FG. Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T1 relaxation measurements. Mol Pharmaceutics. 2010;7(5):1667–91.CrossRefGoogle Scholar
  16. 16.
    Lauer ME, Grassmann O, Siam M, Tardio J, Jacob L, Page S, Kindt JH, Engel A, Alsenz J. Atomic force microscopy-based screening of drug-excipient miscibility and stability of solid dispersions. Pharm Res. 2011;28(3):572–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Padilla AM, Pikal MJ. The study of phase separation in amorphous freeze-dried systems, part 2: investigation of Raman mapping as a tool for studying amorphous phase separation in freeze-dried protein formulations. J Pharm Sci. 2011;100(4):1467–74.CrossRefGoogle Scholar
  18. 18.
    Padilla AM, Chou SG, Luthra S, Pikal MJ. The study of amorphous phase separation in a model polymer phase-separating system using Raman microscopy and a low-temperature stage: effect of cooling rate and nucleation temperature. J Pharm Sci. 2011;100(4):1362–76.CrossRefGoogle Scholar
  19. 19.
    Qi S, Belton P, Nollenberger K, Gryckze A, Craig DQM. Compositional analysis of low quantities of phase separation in hot-melt-extruded solid dispersions: a combined atomic force microscopy, photothermal Fourier-transform infrared microspectroscopy, and localised thermal analysis approach. Pharm Res. 2011;28(9):2311–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Six K, Murphy J, Weuts I, Craig DQM, Verreck G, Peeters J, Brewster M, Van den Mooter G. Identification of phase separation in solid dispersions of itraconazole and Eudragit® E100 using microthermal analysis. Pharm Res. 2003;20(1):135–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Galop M. Study of pharmaceutical solid dispersions by microthermal analysis. Pharm Res. 2005;22(2):293–302.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang J, Bunker M, Parker A, Madden-Smith CE, Patel N, Roberts CJ. The stability of solid dispersions of felodipine in polyvinylpyrrolidone characterized by nanothermal analysis. Int J Pharm. 2011;414(1–2):210–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Van Eerdenbrugh B, Taylor LS. Application of mid-IR spectroscopy for the characterization of pharmaceutical systems. Int J Pharm. 2011;417(1–2):3–16.PubMedCrossRefGoogle Scholar
  24. 24.
    Van Eerdenbrugh B, Lo M, Kjoller K, Marcott C, Taylor LS. Nanoscale Mid-Infrared Imaging of Phase Separation in a Drug-Polymer Blend. J Pharm Sci. Submitted.Google Scholar
  25. 25.
    Izutsu K, Heller MC, Randolph TW, Carpenter JF. Effect of salts and sugars on phase separation of polyvinylpyrrolidone-dextran solutions induced by freeze-concentration. J Chem Soc, Faraday Trans. 1998;94(3):411–7.CrossRefGoogle Scholar
  26. 26.
    Izutsu K, Aoyagi N, Kojima S. Effect of polymer size and cosolutes on phase separation of poly(vinylpyrrolidone) (PVP) and dextran in frozen solutions. 2005;94(4):709–717.Google Scholar
  27. 27.
    Izutsu K, Fujii K, Katori C, Yomota C, Kawanishi T, Yoshihashi Y, Yonemochi E, Terada K. Effects of solute miscibility on the micro- and macroscopic structural integrity of freeze-dried solids. J Pharm Sci. 2010;99(11):4710–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Shamblin SL, Taylor LS, Zografi G. Mixing behavior of colyophilized binary systems. J Pharm Sci. 1998;87(6):694–701.PubMedCrossRefGoogle Scholar
  29. 29.
    Taylor LS, Zografi G. Sugar-polymer hydrogen bonding interactions in lyophilized amorphous mixtures. J Pharm Sci. 1998;87(2):1615–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Patterson D, Robarb A. Thermodynamics of polymer mixing. Macromolecules. 1978;11(4):690–5.CrossRefGoogle Scholar
  31. 31.
    Janarthanan V, Thyagarajan G. Miscibility studies in blends of poly(N-vinyl pyrrolidone) and poly(methyl methacrylate) with epoxy-resin—a comparison. Polymer. 1992;33(17):3593–7.CrossRefGoogle Scholar
  32. 32.
    Zhu KJ, Liquin W, Ji W, Shilin Y. Study of the miscibility of poly(N-vinyl-2-pyrrolidone) with polystyrene[styrene-co-(4-hydroxystyrene)]. Macromol Chem Phys. 1994;195(6):1965–72.CrossRefGoogle Scholar
  33. 33.
    Ahn SB, Jeong HM. Phase behavior and hydrogen bonding in poly(ethylene-co-vinyl alcohol) poly(N-vinyl-2-pyrrolidone) blends. Korea Polym J. 1998;6(5):389–95.Google Scholar
  34. 34.
    Garton A. Some Observations on Kinetic and Steric Limitations to Specific Interactions in Miscible Polymer Blends. Polym Eng Sci. 1984;24(2):112–6.CrossRefGoogle Scholar
  35. 35.
    Rubinstein M, Colby RH. Polymer Physics. New York: Oxford University Press Inc.; 2003.Google Scholar
  36. 36.
    Young RJ, Lovell PA. Introduction to polymers. Cheltenham: Nelson Thornes; 1991.Google Scholar
  37. 37.
    Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Industrial and Physical Pharmacy, College of PharmacyPurdue UniversityWest LafayetteUSA
  2. 2.Laboratory for Pharmacotechnology and BiopharmacyK.U. Leuven, Gasthuisberg O&N2LeuvenBelgium

Personalised recommendations