Pharmaceutical Research

, Volume 29, Issue 4, pp 902–921 | Cite as

Click Chemistry with Polymers, Dendrimers, and Hydrogels for Drug Delivery

  • Enrique Lallana
  • Francisco Fernandez-Trillo
  • Ana Sousa-Herves
  • Ricardo Riguera
  • Eduardo Fernandez-MegiaEmail author
Expert Review


During the last decades, great efforts have been devoted to design polymers for reducing the toxicity, increasing the absorption, and improving the release profile of drugs. Advantage has been also taken from the inherent multivalency of polymers and dendrimers for the incorporation of diverse functional molecules of interest in targeting and diagnosis. In addition, polymeric hydrogels with the ability to encapsulate drugs and cells have been developed for drug delivery and tissue engineering applications. In the long road to this successful story, pharmaceutical sciences have been accompanied by parallel advances in synthetic methodologies allowing the preparation of precise polymeric materials with enhanced properties. In this context, the introduction of the click concept by Sharpless and coworkers in 2001 focusing the attention on modularity and orthogonality has greatly benefited polymer synthesis, an area where reaction efficiency and product purity are significantly challenged. The purpose of this Expert Review is to discuss the impact of click chemistry in the preparation and functionalization of polymers, dendrimers, and hydrogels of interest in drug delivery.

Key Words

click chemistry dendrimer drug delivery hydrogel polymer 





atom transfer radical polymerization


2,2-bis(hydroxymethyl)propionic acid


bathophenanthroline disulphonated disodium salt


contrast agent




Concanavalin A




Cu(I)-catalyzed azide-alkyne cycloaddition




drug delivery system








enhanced permeability and retention


gallic acid-triethylene glycol


lower critical solution temperature


living radical polymerization


methacryloyloxyethyl phosphorylcholine


matrix metalloproteinase


magnetic resonance imaging


mesenchymal stem cells




poly(amido amine)


poly(ethylene glycol)


poly(ethylene imine)


poly(ethylene oxide)


polyion complex




propargyl methacrylate




poly(methyl methacrylate)




poly(oligo(ethylene glycol) acrylate)


poly(propylene imine)




poly(vinyl alcohol)


reversible addition-fragmentation chain transfer




ring-opening methathesis polymerization


reactive oxygen species


strain-promoted azide-alkyne cycloaddition


surface plasmon resonance




thiol-ene coupling






thiol-yne coupling


Acknowledgments & DISCLOSURES

This work was financially supported by the Spanish Ministry of Science and Innovation (CTQ2009-10963 and CTQ2009-14146-C02-02) and the Xunta de Galicia (10CSA209021PR and CN2011/037).


  1. 1.
    Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Contr Rel. 2008;132:153–63.CrossRefGoogle Scholar
  2. 2.
    Trost BM. Basic aspects of organic synthesis with transition metals. In (eds.), Wiley-VCH Verlag GmbH, 2008, pp. 2-14Google Scholar
  3. 3.
    Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem, Int Ed. 2001;40:2004–21.CrossRefGoogle Scholar
  4. 4.
    Wu P, Fokin VV. Catalytic azide-alkyne cycloaddition: Reactivity and applications. Aldrichimica Acta. 2007;40:7–17.Google Scholar
  5. 5.
    Meldal M, Tornøe CW. Cu-Catalyzed azide-alkyne cycloaddition. Chem Rev. 2008;108:2952–3015.PubMedCrossRefGoogle Scholar
  6. 6.
    Iha RK, Wooley KL, Nyström AM, Burke DJ, Kade MJ, Hawker CJ. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev. 2009;109:5620–86.PubMedCrossRefGoogle Scholar
  7. 7.
    van Dijk M, Rijkers DTS, Liskamp RMJ, van Nostrum CF, Hennink WE. Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjugate Chem. 2009;20:2001–16.CrossRefGoogle Scholar
  8. 8.
    Lallana E, Sousa-Herves A, Fernandez-Trillo F, Riguera R, Fernandez-Megia E. Click chemistry for drug delivery nanosystems. Pharm. Res. 2012;29:1–34.Google Scholar
  9. 9.
    Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002;67:3057–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem, Int Ed. 2002;41:2596–9.CrossRefGoogle Scholar
  11. 11.
    Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126:15046–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Lallana E, Riguera R, Fernandez-Megia E. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide–alkyne cycloadditions. Angew Chem Int Ed. 2011;50:8794–804.CrossRefGoogle Scholar
  13. 13.
    Kwon GS. Polymeric drug delivery systems. Taylor & Francis, 2005.Google Scholar
  14. 14.
    Barner-Kowollik C, DuPrez FE, Espeel P, Hawker CJ, Junkers T, Schlaad H, et al. “Clicking” polymers or just efficient linking: What is the difference? Angew Chem Int Ed. 2011;50:60–2.CrossRefGoogle Scholar
  15. 15.
    Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev. 2010;110:1857–959.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee CC, MacKay JA, Fréchet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23:1517–26.PubMedCrossRefGoogle Scholar
  17. 17.
    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers: Starburst-dendritic macromolecules. Polym J. 1985;17:117–32.CrossRefGoogle Scholar
  18. 18.
    de Brabander-van den Berg EMM, Meijer EW. Poly(propylene imine) dendrimers: Large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem, Int Ed. 1993;32:1308–11.CrossRefGoogle Scholar
  19. 19.
    Haag R, Sunder A, Stumbe J-F. An approach to glycerol dendrimers and pseudo-dendritic polyglycerols. J Am Chem Soc. 2000;122:2954–5.CrossRefGoogle Scholar
  20. 20.
    Wu P, Feldman AK, Nugent AK, Hawker CJ, Scheel A, Voit B, et al. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angew Chem, Int Ed. 2004;43:3928–32.CrossRefGoogle Scholar
  21. 21.
    Hawker CJ, Fréchet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc. 1990;112:7638–47.CrossRefGoogle Scholar
  22. 22.
    Joralemon MJ, O’Reilly RK, Matson JB, Nugent AK, Hawker CJ, Wooley KL. Dendrimers clicked together divergently. Macromolecules. 2005;38:5436–43.CrossRefGoogle Scholar
  23. 23.
    Wu P, Malkoch M, Hunt JN, Vestberg R, Kaltgrad E, Finn MG, Fokin VV, Sharpless KB, Hawker CJ. Multivalent, bifunctional dendrimers prepared by click chemistry. Chem. Commun. 5775–5777 (2005).Google Scholar
  24. 24.
    Kose MM, Yesilbag G, Sanyal A. Segment block dendrimers via Diels-Alder cycloaddition. Org Lett. 2008;10:2353–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Antoni P, Hed Y, Nordberg A, Nyström D, von Holst H, Hult A, Malkoch M. Bifunctional dendrimers: From robust synthesis and accelerated one-pot postfunctionalization strategy to potential applications. Angew Chem, Int Ed. 2009;48:2126–30.CrossRefGoogle Scholar
  26. 26.
    Killops KL, Campos LM, Hawker CJ. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry. J Am Chem Soc. 2008;130:5062–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen G, Kumar J, Gregory A, Stenzel MH. Efficient synthesis of dendrimers via a thiol-yne and esterification process and their potential application in the delivery of platinum anti-cancer drugs. Chem. Commun. 6291–6293 (2009).Google Scholar
  28. 28.
    Kang T, Amir RJ, Khan A, Ohshimizu K, Hunt JN, Sivanandan K, et al. Facile access to internally functionalized dendrimers through efficient and orthogonal click reactions. Chem Commun. 2010;46:1556–8.CrossRefGoogle Scholar
  29. 29.
    Amir RJ, Albertazzi L, Willis J, Khan A, Kang T, Hawker CJ. Multifunctional trackable dendritic scaffolds and delivery agents. Angew Chem Int Ed. 2011;50:3425–9.CrossRefGoogle Scholar
  30. 30.
    Brauge L, Magro G, Caminade AM, Majoral JP. First divergent strategy using two AB2 unprotected monomers for the rapid synthesis of dendrimers. J Am Chem Soc. 2001;123:6698–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Maraval V, Caminade AM, Majoral JP, Blais JC. Dendrimer design: How to circumvent the dilemma of a reduction of steps or an increase of function multiplicity? Angew Chem Int Ed. 2003;42:1822–6.CrossRefGoogle Scholar
  32. 32.
    Antoni P, Nyström D, Hawker CJ, Hult A, Malkoch M. A chemoselective approach for the accelerated synthesis of well-defined dendritic architectures. Chem. Commun. 2249–2251 (2007).Google Scholar
  33. 33.
    Vieyres A, Lam T, Gillet R, Franc G, Castonguay A, Kakkar A. Combined CuI-catalysed alkyne-azide cycloaddition and furan-maleimide Diels-Alder “click” chemistry approach to thermoresponsive dendrimers. Chem Commun. 2010;46:1875–7.CrossRefGoogle Scholar
  34. 34.
    Antoni P, Robb MJ, Campos L, Montanez M, Hult A, Malmström E, et al. Pushing the limits for thiol-ene and CuAAC reactions: Synthesis of a 6th generation dendrimer in a single day. Macromolecules. 2010;43:6625–31.CrossRefGoogle Scholar
  35. 35.
    Malkoch M, Schleicher K, Drockenmuller E, Hawker CJ, Russell TP, Wu P, et al. Structurally diverse dendritic libraries: A highly efficient functionalization approach using click chemistry. Macromolecules. 2005;38:3663–78.CrossRefGoogle Scholar
  36. 36.
    Gabius H-J. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-Blackwell; 2009.Google Scholar
  37. 37.
    Imberty A, Chabre YM, Roy R. Glycomimetics and glycodendrimers as high affinity microbial anti-adhesins. Chem Eur J. 2008;14:7490–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Joosten JAF, Tholen NTH, Ait El Maate F, Brouwer AJ, Wilma Van Esse G, Rijkers DTS, et al. High-yielding microwave-assisted synthesis of triazole-linked glycodendrimers by copper-catalyzed [3+2] cycloaddition. Eur J Org Chem. 2005;70:3182–5.CrossRefGoogle Scholar
  39. 39.
    Fernandez-Megia E, Correa J, Rodríguez-Meizoso I, Riguera R. A click approach to unprotected glycodendrimers. Macromolecules. 2006;39:2113–20.CrossRefGoogle Scholar
  40. 40.
    Fernandez-Megia E, Correa J, Riguera R. “Clickable” PEG-dendritic block copolymers. Biomacromolecules. 2006;7:3104–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Munoz EM, Correa J, Fernandez-Megia E, Riguera R. Probing the relevance of lectin clustering for the reliable evaluation of multivalent carbohydrate recognition. J Am Chem Soc. 2009;131:17765–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.PubMedCrossRefGoogle Scholar
  43. 43.
    Rijkers DTS, Van Esse GW, Merkx R, Brouwer AJ, Jacobs HJF, Pieters RJ, Liskamp RMJ. Efficient microwave-assisted synthesis of multivalent dendrimeric peptides using cycloaddition reaction (click) chemistry. Chem. Commun. 4581-4583 (2005).Google Scholar
  44. 44.
    Dijkgraaf I, Rijnders AY, Soede A, Dechesne AC, van Esse GW, Brouwer AJ, et al. Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: Implications for tumor targeting and tumor imaging purposes. Org Biomol Chem. 2007;5:935–44.PubMedCrossRefGoogle Scholar
  45. 45.
    Pieters RJ, Rijkers DTS, Liskamp RMJ. Application of the 1,3-dipolar cycloaddition reaction in chemical biology: Approaches toward multivalent carbohydrates and peptides and peptide-based polymers. QSAR & Combinatorial Science. 2007;26:1181–90.CrossRefGoogle Scholar
  46. 46.
    de Castro S, Maruoka H, Hong K, Kilbey SM, Costanzi S, Hechler B, et al. Functionalized congeners of P2Y1 receptor antagonists: 2-Alkynyl (N)-methanocarba 2′-deoxyadenosine 3′,5′-bisphosphate analogues and conjugation to a polyamidoamine (PAMAM) dendrimer carrier. Bioconjugate Chem. 2010;21:1190–205.CrossRefGoogle Scholar
  47. 47.
    Tosh DK, Yoo LS, Chinn M, Hong K, Kilbey II SM, Barrett MO, et al. Polyamidoamine (PAMAM) dendrimer conjugates of “clickable” agonists of the A3 adenosine receptor and coactivation of the P2Y14 receptor by a tethered nucleotide. Bioconjugate Chem. 2010;21:372–84.CrossRefGoogle Scholar
  48. 48.
    Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Del Rev. 2005;57:2177–202.CrossRefGoogle Scholar
  49. 49.
    Volpi N. Therapeutic applications of glycosaminoglycans. Curr Med Chem. 2006;13(15):1799–810.PubMedCrossRefGoogle Scholar
  50. 50.
    Lee Y, Kataoka K. Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter. 2009;5:3810–7.CrossRefGoogle Scholar
  51. 51.
    Sousa-Hervés A, Fernandez-Megia E, Riguera R. Synthesis and supramolecular assembly of clicked anionic dendritic polymers into polyion complex micelles. Chem. Commun. 3136–3138 (2008).Google Scholar
  52. 52.
    Weinhart M, Gröger D, Enders S, Dernedde J, Haag R. Synthesis of dendritic polyglycerol anions and their efficiency toward L-selectin inhibition. Biomacromolecules. 2011;12:2502–11.PubMedCrossRefGoogle Scholar
  53. 53.
    Villaraza AJL, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev. 2010;110:2921–59.PubMedCrossRefGoogle Scholar
  54. 54.
    Fernández-Trillo F, Pacheco-Torres J, Correa J, Ballesteros P, Lopez-Larrubia P, Cerdán S, et al. Dendritic MRI contrast agents: An efficient prelabeling approach based on CuAAC. Biomacromolecules. 2011;12:2902–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discovery Today. 2005;10:1451–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Gopin A, Ebner S, Attali B, Shabat D. Enzymatic activation of second-generation dendritic prodrugs: Conjugation of self-immolative dendrimers with poly(ethylene glycol) via click chemistry. Bioconjugate Chem. 2006;17:1432–40.CrossRefGoogle Scholar
  57. 57.
    Amir RJ, Danieli E, Shabat D. Receiver-amplifier, self-immolative dendritic device. Chem Eur J. 2007;13:812–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Ornelas C, Broichhagen J, Weck M. Strain-promoted alkyne azide cycloaddition for the functionalization of poly(amide)-based dendrons and dendrimers. J Am Chem Soc. 2010;132:3923–31.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee CC, Gillies ER, Fox ME, Guillaudeu SJ, Fréchet JMJ, Dy EE, et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA. 2006;103:16649–54.PubMedCrossRefGoogle Scholar
  60. 60.
    Calderón M, Graeser R, Kratz F, Haag R. Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorg Med Chem Lett. 2009;19:3725–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Diaz DD, Punna S, Holzer P, McPherson AK, Sharpless KB, Fokin VV, et al. Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. J Polym Sci, Part A: Polym Sci. 2004;42:4392–403.CrossRefGoogle Scholar
  62. 62.
    Steenis DJVCv, David ORP, Strijdonck GPFv, Maarseveen JHv, Reek JNH. Click-chemistry as an efficient synthetic tool for the preparation of novel conjugated polymers. Chem. Commun. 4333–4335 (2005).Google Scholar
  63. 63.
    Angelo NG, Arora PS. Nonpeptidic foldamers from amino acids: synthesis and characterization of 1,3-substituted triazole oligomers. J Am Chem Soc. 2005;127:17134–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Angell YL, Burgess K. Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions. Chem Soc Rev. 2007;36:1674–89.PubMedCrossRefGoogle Scholar
  65. 65.
    Srinivasachari S, Liu Y, Zhang G, Prevette L, Reineke TM. Trehalose click polymers inhibit nanoparticle aggregation and promote pDNA delivery in serum. J Am Chem Soc. 2006;128:8176–84.PubMedCrossRefGoogle Scholar
  66. 66.
    Srinivasachari S, Liu Y, Prevette LE, Reineke TM. Effects of trehalose click polymer length on pDNA complex stability and delivery efficacy. Biomaterials. 2007;28:2885–98.PubMedCrossRefGoogle Scholar
  67. 67.
    Srinivasachari S, Reineke TM. Versatile supramolecular pDNA vehicles via “click polymerization” of β-cyclodextrin with oligoethyleneamines. Biomaterials. 2009;30:928–38.PubMedCrossRefGoogle Scholar
  68. 68.
    Prevette LE, Lynch ML, Kizjakina K, Reineke TM. Correlation of amine number and pDNA binding mechanism for trehalose-based polycations. Langmuir. 2008;24:8090–101.PubMedCrossRefGoogle Scholar
  69. 69.
    Barua S, Joshi A, Banerjee A, Matthews D, Sharfstein ST, Cramer SM, et al. Parallel synthesis and screening of polymers for non-viral gene delivery. Mol Pharmaceutics. 2008;6:86–97.CrossRefGoogle Scholar
  70. 70.
    Binder WH, Kluger C. Combining ring-opening metathesis polymerization (ROMP) with Sharpless-type ‘click’ reactions: An easy method for the preparation of side chain functionalized poly(oxynorbornenes). Macromolecules. 2004;37:9321–30.CrossRefGoogle Scholar
  71. 71.
    Parrish B, Breitenkamp RB, Emrick T. PEG- and peptide-grafted aliphatic polyesters by click chemistry. J Am Chem Soc. 2005;127:7404–10.PubMedCrossRefGoogle Scholar
  72. 72.
    Sumerlin BS, Tsarevsky NV, Louche G, Lee RY, Matyjaszewski K. Highly efficient “click” functionalization of poly(3-azidopropyl methacrylate) prepared by ATRP. Macromolecules. 2005;38:7540–5.CrossRefGoogle Scholar
  73. 73.
    Ladmiral V, Mantovani G, Clarkson GJ, Cauet S, Irwin JL, Haddleton DM. Synthesis of neoglycopolymers by a combination of “click chemistry” and living radical polymerization. J Am Chem Soc. 2006;128:4823–30.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang X, Lian X, Liu L, Zhang J, Zhao H. Synthesis of comb copolymers with pendant chromophore groups based on RAFT polymerization and click chemistry and formation of electron donor-acceptor supramolecules. Macromolecules. 2008;41:7863–9.CrossRefGoogle Scholar
  75. 75.
    Zhang W, Zhang W, Zhang Z, Zhu J, Zhu X. SET-RAFT polymerization of progargyl methacrylate and a one-pot/one-step preparation of side-chain functionalized polymers via combination of SET-RAFT and click chemistry. Macromol Rapid Commun. 2010;31:1354–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Geng J, Lindqvist J, Mantovani G, Haddleton DM. Simultaneous copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and living radical polymerization. Angew Chem, Int Ed. 2008;47:4180–3.CrossRefGoogle Scholar
  77. 77.
    Chen X, McRae S, Parelkar S, Emrick T. Polymeric phosphorylcholine-camptothecin conjugates prepared by controlled free radical polymerization and click chemistry. Bioconjugate Chem. 2009;20:2331–41.CrossRefGoogle Scholar
  78. 78.
    Mather BD, Viswanathan K, Miller KM, Long TE. Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci. 2006;31:487–531.CrossRefGoogle Scholar
  79. 79.
    Ulbrich K, Subr V. Polymeric anticancer drugs with pH-controlled activation. Adv Drug Del Rev. 2004;56:1023–50.CrossRefGoogle Scholar
  80. 80.
    Gress A, Volkel A, Schlaad H. Thio-click modification of poly[2-(3-butenyl)-2-oxazoline]. Macromolecules. 2007;40:7928–33.CrossRefGoogle Scholar
  81. 81.
    Malkoch M, Thibault RJ, Drockenmuller E, Messerschmidt M, Voit B, Russell TP, et al. Orthogonal approaches to the simultaneous and cascade functionalization of macromolecules using click chemistry. J Am Chem Soc. 2005;127:14942–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Yang SK, Weck M. Modular covalent multifunctionalization of copolymers. Macromolecules. 2007;40:346–51.Google Scholar
  83. 83.
    Taton D, Gnanou Y. Guidelines for synthesizing block copolymers. In (eds.), Wiley-VCH Verlag GmbH & Co., 2008, pp. 9–38Google Scholar
  84. 84.
    Opsteen JA, van Hest JCM. Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. Chem. Commun. 57–59 (2005).Google Scholar
  85. 85.
    Quémener D, Davis TP, Barner-Kowollik C, Stenzel MH. RAFT and click chemistry: A versatile approach to well-defined block copolymers. Chem. Commun. 5051–5053 (2006).Google Scholar
  86. 86.
    Agut W, Taton D, Lecommandoux S. A versatile synthetic approach to polypeptide based rod-coil block copolymers by click chemistry. Macromolecules. 2007;40:5653–61.CrossRefGoogle Scholar
  87. 87.
    Lutz JF, Börner HG, Weichenhan K. Combining ATRP and “click” chemistry: A promising platform toward functional biocompatible polymers and polymer bioconjugates. Macromolecules. 2006;39:6376–83.CrossRefGoogle Scholar
  88. 88.
    Narumi A, Fuchise K, Kakuchi R, Toda A, Satoh T, Kawaguchi S, et al. A versatile method for adjusting thermoresponsivity: Synthesis and “click” reaction of an azido end-functionalized poly(N-isopropylacrylamide). Macromol Rapid Commun. 2008;29:1126–33.CrossRefGoogle Scholar
  89. 89.
    Campos LM, Killops KL, Sakai R, Paulusse JMJ, Damiron D, Drockenmuller E, et al. Development of thermal and photochemical strategies for thiol-ene click polymer functionalization. Macromolecules. 2008;41:7063–70.CrossRefGoogle Scholar
  90. 90.
    Yu B, Chan JW, Hoyle CE, Lowe AB. Sequential thiol-ene/thiol-ene and thiol-ene/thiol-yne reactions as a route to well-defined mono and bis end-functionalized poly(N-isopropylacrylamide). J Polym Sci, Part A: Polym Sci. 2009;47:3544–57.CrossRefGoogle Scholar
  91. 91.
    Durmaz H, Dag A, Altintas O, Erdogan T, Hizal G, Tunca U. One-pot synthesis of ABC type triblock copolymers via in situ click [3+2] and Diels-Alder [4+2] reactions. Macromolecules. 2007;40:191–8.CrossRefGoogle Scholar
  92. 92.
    Gungor E, Hizal G, Tunca U. One-pot double click reactions for the preparation of H-shaped ABCDE-type quintopolymer. J Polym Sci, Part A: Polym Sci. 2009;47:3409–18.CrossRefGoogle Scholar
  93. 93.
    Nasongkla N, Chen B, Macaraeg N, Fox ME, Fréchet JMJ, Szoka FC. Dependence of pharmacokinetics and biodistribution on polymer architecture: Effect of cyclic versus linear polymers. J Am Chem Soc. 2009;131:3842–3.PubMedCrossRefGoogle Scholar
  94. 94.
    Tsarevsky NV, Sumerlin BS, Matyjaszewski K. Step-growth “click” coupling of telechelic polymers prepared by atom transfer radical polymerization. Macromolecules. 2005;38:3558–61.CrossRefGoogle Scholar
  95. 95.
    Laurent BA, Grayson SM. An efficient route to well-defined macrocyclic polymers via “click” cyclization. J Am Chem Soc. 2006;128:4238–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Lonsdale DE, Bell CA, Monteiro MJ. Strategy for rapid and high-purity monocyclic polymers by CuAAC “click” reactions. Macromolecules. 2010;43:3331–9.CrossRefGoogle Scholar
  97. 97.
    Ge Z, Zhou Y, Xu J, Liu H, Chen D, Liu S. High-efficiency preparation of macrocyclic diblock copolymers via selective click reaction in micellar media. J Am Chem Soc. 2009;131:1628–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer. 2008;49:1993–2007.CrossRefGoogle Scholar
  99. 99.
    Elbert DL, Pratt AB, Lutolf MP, Halstenberg S, Hubbell JA. Protein delivery from materials formed by self-selective conjugate addition reactions. J Contr Rel. 2001;76:11–25.CrossRefGoogle Scholar
  100. 100.
    Lei Y, Segura T. DNA delivery from matrix metalloproteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells. Biomaterials. 2009;30:254–65.PubMedCrossRefGoogle Scholar
  101. 101.
    Brochu ABW, Craig SL, Reichert WM. Self-healing biomaterials. J Biomed Mater Res, Part A. 2011;96A:492–506.CrossRefGoogle Scholar
  102. 102.
    Chujo Y, Sada K, Saegusa T. Reversible gelation of polyoxazoline by means of Diels-Alder reaction. Macromolecules. 1990;23:2636–41.CrossRefGoogle Scholar
  103. 103.
    Wei H-L, Yang Z, Zheng L-M, Shen Y-M. Thermosensitive hydrogels synthesized by fast Diels-Alder reaction in water. Polymer. 2009;50:2836–40.CrossRefGoogle Scholar
  104. 104.
    Ossipov DA, Hilborn J. Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules. 2006;39:1709–18.CrossRefGoogle Scholar
  105. 105.
    Malkoch M, Vestberg R, Gupta N, Mespouille L, Dubois P, Mason AF, Hedrick JL, Liao Q, Frank CW, Kingsbury K, Hawker CJ. Synthesis of well-defined hydrogel networks using click chemistry. Chem. Commun. 2774–2776 (2006).Google Scholar
  106. 106.
    Crescenzi V, Cornelio L, Di Meo C, Nardecchia S, Lamanna R. Novel hydrogels via click chemistry: Synthesis and potential biomedical applications. Biomacromolecules. 2007;8:1844–50.PubMedCrossRefGoogle Scholar
  107. 107.
    Testa G, Di Meo C, Nardecchia S, Capitani D, Mannina L, Lamanna R, et al. Influence of dialkyne structure on the properties of new click-gels based on hyaluronic acid. Int J Pharm. 2009;378:86–92.PubMedCrossRefGoogle Scholar
  108. 108.
    Johnson JA, Baskin JM, Bertozzi CR, Koberstein JT, Turro NJ. Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers. Chem. Commun. 3064–3066 (2008).Google Scholar
  109. 109.
    Johnson JA, Lewis DR, Diaz DD, Finn MG, Koberstein JT, Turro NJ. Synthesis of degradable model networks via ATRP and click chemistry. J Am Chem Soc. 2006;128:6564–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Johnson JA, Finn MG, Koberstein JT, Turro NJ. Synthesis of photocleavable linear macromonomers by ATRP and star macromonomers by a tandem ATRP-click reaction: Precursors to photodegradable model networks. Macromolecules. 2007;40:3589–98.CrossRefGoogle Scholar
  111. 111.
    DeForest CA, Polizzotti BD, Anseth KS. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater. 2009;8:659–64.PubMedCrossRefGoogle Scholar
  112. 112.
    DeForest CA, Sims EA, Anseth KS. Peptide-functionalized click hydrogels with independently tunable mechanics and chemical functionality for 3D cell culture. Chem Mat. 2010;22:4783–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Enrique Lallana
    • 1
  • Francisco Fernandez-Trillo
    • 1
  • Ana Sousa-Herves
    • 1
  • Ricardo Riguera
    • 1
  • Eduardo Fernandez-Megia
    • 1
    Email author
  1. 1.Department of Organic Chemistry Center for Research in Biological Chemistry & Molecular Materials (CIQUS)University of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations