Advertisement

Pharmaceutical Research

, Volume 29, Issue 5, pp 1366–1379 | Cite as

A Model for Predicting Field-Directed Particle Transport in the Magnetofection Process

  • Edward P. Furlani
  • Xiaozheng Xue
Research Paper

ABSTRACT

Purpose

To analyze the magnetofection process in which magnetic carrier particles with surface-bound gene vectors are attracted to target cells for transfection using an external magnetic field and to obtain a fundamental understanding of the impact of key factors such as particle size and field strength on the gene delivery process.

Methods

A numerical model is used to study the field-directed transport of the carrier particle-gene vector complex to target cells in a conventional multiwell culture plate system. The model predicts the transport dynamics and the distribution of particle accumulation at the target cells.

Results

The impact of several factors that strongly influence gene vector delivery is assessed including the properties of the carrier particles, the strength of the field source, and its extent and proximity relative to the target cells.

Conclusions

The study demonstrates that modeling can be used to predict and optimize gene vector delivery in the magnetofection process for novel and conventional in vitro systems.

KEY WORDS

magnetic biotransport magnetic gene delivery magnetic targeting magnetofection magnetophoresis 

Notes

ACKNOWLEDGMENTS & DISCLOSURES

The authors are grateful to Professor Christian Plank and Dr. Olga Mykhaylyk for many useful technical discussions.

REFERENCES

  1. 1.
    Marcucci F, Lefoulon F. Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov Today. 2004;9(5):219–28.PubMedCrossRefGoogle Scholar
  2. 2.
    Pankhurst QA, Thanh NKT, Jones SK, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2009;42:224001.CrossRefGoogle Scholar
  3. 3.
    Hafeli U, Schutt W, Teller J (Eds.). 1997 Scientific and clinical applications of magnetic carriers. New York: Plenum Press; 1997.Google Scholar
  4. 4.
    Berry CC. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys. 2009;42:224003.CrossRefGoogle Scholar
  5. 5.
    Furlani EP. Magnetic biotransport: analysis and applications. Materials. 2010;3(4):2412–46.CrossRefGoogle Scholar
  6. 6.
    Plank C, Zelphati OF, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-Progress and prospects. Adv Drug Deliv Rev. 2001;63(14–15):1300–31.CrossRefGoogle Scholar
  7. 7.
    Plank C, Schillinger U, Scherer F, Bergemann C, Rémy J-S, Krötz F, Anton M, Lausier J, Rosenecker J. The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem. 2003;384:737–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B, Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9:102–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Plank C, Anton M, Rudolph C, Rosenecker J, Krötz F. Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin Biol Ther. 2003;3:745–58.PubMedCrossRefGoogle Scholar
  10. 10.
    Plank C, Scherer F, Schillinger U, Bergemann C, Anton M. Magnetofection: enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields. J Liposome Res. 2003;13(1):29–32.PubMedCrossRefGoogle Scholar
  11. 11.
    Plank C, Scherer F, Schillinger U, Anton M. Magnetofection: enhancement and localization of gene delivery with magnetic particles under influence of a magnetic fields. J Gene Med. 2000;2((5) Suppl):S24.Google Scholar
  12. 12.
    Plank C. Magnetofection: enhancing and targeting gene delivery with lipid-DNA vectors by magnetic force. J Liposome Res. 2003;13(1):105–6.CrossRefGoogle Scholar
  13. 13.
    Krötz F, Son HY, Gloe T, Planck C. Magnetofection potentiates gene delivery to cultured endothelial. J Vasc Res. 2003;40:425–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Krötz F, Wit C, Sohn HY, Zahler S, Gloe T, Pohl U, Plank C. Magnetofection-A highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther. 2003;7(5):700–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Sanchez-Antequera Y, Mykhaylyk O, Van Ti NP, Cengizeroglu A, De Jong HJ, Marshall W, Huston MW, et al. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells. Blood. 2011;117:e171–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Kami D, Takeda S, Itakura Y, Gojo S, Watanabe M, Toyoda M. Application of magnetic nanoparticles to gene delivery. Int J Mol Sci. 2011;12:3705–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Furlani EP, Ng KC. Nanoscale magnetic biotransport with application to magnetofection. Phys Rev E. 2008;77:061914.CrossRefGoogle Scholar
  18. 18.
    Furlani EP. Nanoscale magnetic biotransport. In: Sattler K, editor. Handbook of nanophysics, nanomedicine and nanorobotics. Boca Raton: CRC Press; 2010.Google Scholar
  19. 19.
    Furlani EP. Particle transport in magnetophoretic microsystems. In: Kumar CSSR, editor. Microfluidic devices in nanotechnology: fundamental concepts. New York: Wiley; 2010. p. 215–62.CrossRefGoogle Scholar
  20. 20.
    Furlani EP. Analysis of particle transport in a magnetophoretic microsystem. J Appl Phys. 2006;99(2):024912.CrossRefGoogle Scholar
  21. 21.
    Gerber R. Magnetic filtration of ultra-fine particles. IEEE Trans Magn. 1984;20(5):1159–64.CrossRefGoogle Scholar
  22. 22.
    Kelland DR. Magnetic separation of nanoparticles. IEEE Trans Magn. 1998;34(4):2123–5.CrossRefGoogle Scholar
  23. 23.
    Fletcher D. Fine particle high gradient magnetic entrapment. IEEE Trans Magn. 1991;27(4):3655–77.CrossRefGoogle Scholar
  24. 24.
    Davies LP, Gerber R. 2-D Simulation of ultra-fine particle capture by a single-wire magnetic collector. IEEE Trans Magn. 1990;26(5):1867–9.CrossRefGoogle Scholar
  25. 25.
    Gerber R, Birss RR. High gradient magnetic separation. New Jersey: Wiley; 1983.Google Scholar
  26. 26.
    Gerber R, Takayasu M, Friedlander FJ. Generalization of HGMS theory: the capture of ultra-fine particles. IEEE Trans Magn. 1983;19(5):2115–7.CrossRefGoogle Scholar
  27. 27.
    Takayasu M, Gerber R, Friedlander FJ. Magnetic separation of sub-micron particles. IEEE Trans Magn. 1983;19:2112–4.CrossRefGoogle Scholar
  28. 28.
    Furlani EP, Ng KC. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys Rev E. 2006;73:061919.CrossRefGoogle Scholar
  29. 29.
    Furlani EP, Sahoo Y. Analytical model for the magnetic field and force in a magnetophoretic microsystem. J Phys D: Appl Phys. 2006;39:1724–32.CrossRefGoogle Scholar
  30. 30.
    Furlani EJ, Furlani EP. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J Magn Magn Mater. 2007;312(1):187–93.CrossRefGoogle Scholar
  31. 31.
    Furlani EP, Sahoo Y, Ng KC, Wortman JC, Monk TE. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed Microdevices. 2007;9(4):451–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Smith C-AM, Fuente J, Pelaz B, Furlani EP, Mullind M, Berry CC. The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles. Biomaterials. 2010;31(15):4392–400.PubMedCrossRefGoogle Scholar
  33. 33.
    Plank C, Scherer F, Schillinger U, Anton M, Bergemann C. Magnetofection: enhancing and targeting gene delivery by magnetic force. Eur Cells Mat. 2002;3 Suppl 2:79–80.Google Scholar
  34. 34.
    Furlani EP. Permanent magnet and electromechanical devices; materials, analysis and applications. New York: Academic; 2001.Google Scholar
  35. 35.
    Furlani EP. Computing the field in permanent-magnet axial-field motors. IEEE Trans. Mag. 1994;30.Google Scholar
  36. 36.
    Furlani EP. A method for computing the field in permanent-magnet axial-field motors. IEEE Trans Magn. 1992;28(5):2061–6.CrossRefGoogle Scholar
  37. 37.
    Furlani EP. Field analysis and optimization of NdFeB axial field permanent magnet motors. IEEE Trans Magn. 1997;33(5):3883–5.CrossRefGoogle Scholar
  38. 38.
    Furlani EP, Knewtson MA. A three-dimensional field solution for permanent-magnet axial-field motors. IEEE Trans Magn. 1997;33(3):2322–5.CrossRefGoogle Scholar
  39. 39.
    Stratton JA. Electromagnetic theory. New York: McGraw-Hill; 1941.Google Scholar
  40. 40.
    Arfken G. Mathematical methods for physics, 3rd ed. California: Academic Press; 1985.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Dept. Chemical & Biological EngineeringUniversity at Buffalo (SUNY)BuffaloUSA
  2. 2.Dept. of Electrical EngineeringUniversity at Buffalo (SUNY)BuffaloUSA

Personalised recommendations