Pharmaceutical Research

, Volume 29, Issue 4, pp 1033–1039 | Cite as

Protected Graft Copolymer (PGC) Basal Formulation of Insulin as Potentially Safer Alternative to Lantus® (Insulin-Glargine): A Streptozotocin-Induced, Diabetic Sprague Dawley Rats Study

  • Sandra Reichstetter
  • Gerardo M. Castillo
  • ManShun Lai
  • Akiko Nishimoto-Ashfield
  • Aryamitra Banerjee
  • Alexei Bogdanov
  • Alexander V. Lyubimov
  • Elijah M. Bolotin
Research Paper



To develop a long-acting formulation of native human insulin with a similar pharmacodynamics (PD) profile as the insulin analogue insulin glargine (Lantus®, Sanofi-Aventis) with the expectation of retaining native human insulin’s superior safety profile as insulin glargine is able to activate the insulin-like growth factor 1 (IGF-1) receptor and is linked to a number of malignancies at a higher rate than regular human insulin.


Development of protected graft copolymer (PGC) excipients that bind native human insulin non-covalently and testing blood glucose control obtained with these formulations in streptozotocin-induced diabetic Sprague Dawley rats compared to equally dosed insulin glargine.


PGC-formulations of native human insulin are able to control blood glucose to the same extent and for the same amount of time after s.c. injection as the insulin analogue insulin glargine. No biochemical changes were made to the insulin that would change receptor binding and activation with their possible negative effects on the safety of the insulin.


Formulation with the PGC excipient offers a viable alternative to biochemically changing insulin or other receptor binding peptides to improve PD properties.


Blood glucose development in STZ-diabetic Sprague Dawley rats after s.c. injection of 1 mg/kg regular human insulin formulated with formulations 605c, 421a, and 421b, or an equivalent dose of insulin glargine.


basal drug delivery excipient human insulin long-acting nanocarrier peptide PGC protected graft copolymer 



blood glucose


Neutral Protamine Hagedorn insulin


Protected graft copolymer




Acknowledgements & Disclosures

The work described in this publication has been supported by the NIH/NIDDK SBIR grant 5R44 DK069727-04 and 3R44DK069727-04S1. We also thank Ms. Cynthia C. Jones for expert help in editing and proof reading the manuscript.

Sandra Reichstetter, Man Shun Lai, Akiko Nishimoto-Ashfield, Gerardo Castillo, and Elijah Bolotin are paid employees and stock option holders of PharmaIN Corporation. Alexei Bogdanov is a shareholder of PharmaIN Corporation.


  1. 1.
    Bolli GB, et al. Insulin analogues and their potential in the management of diabetes mellitus. Diabetologia. 1999;42(10):1151–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Campbell RK, et al. Insulin glargine. Clin Ther. 2001;23(12):1938–57. discussion 1923.PubMedCrossRefGoogle Scholar
  3. 3.
    Heise T, Heinemann L. Rapid and long-acting analogues as an approach to improve insulin therapy: an evidence-based medicine assessment. Curr Pharm Des. 2001;7(14):1303–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Hirsch IB. Insulin analogues. N Engl J Med. 2005;352(2):174–83.PubMedCrossRefGoogle Scholar
  5. 5.
    McKeage K, Goa KL. Insulin glargine: a review of its therapeutic use as a long-acting agent for the management of type 1 and 2 diabetes mellitus. Drugs. 2001;61(11):1599–624.PubMedCrossRefGoogle Scholar
  6. 6.
    Porcellati F, et al. Comparison of pharmacokinetics and dynamics of the long-acting insulin analogs glargine and detemir at steady state in type 1 diabetes: a double-blind, randomized, crossover study. Diabetes Care. 2007;30(10):2447–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Kurtzhals P, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes. 2000;49(6):999–1005.PubMedCrossRefGoogle Scholar
  8. 8.
    Le Roith D. Insulin glargine and receptor-mediated signalling: clinical implications in treating type 2 diabetes. Diabetes Metab Res Rev. 2007;23(8):593–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Staiger K, et al. Comparison of the mitogenic potency of regular human insulin and its analogue glargine in normal and transformed human breast epithelial cells. Horm Metab Res. 2007;39(1):65–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Liefvendahl E, Arnqvist HJ. Mitogenic effect of the insulin analogue glargine in malignant cells in comparison with insulin and IGF-I. Horm Metab Res. 2008;40(6):369–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Mayer D, Shukla A, Enzmann H. Proliferative effects of insulin analogues on mammary epithelial cells. Arch Physiol Biochem. 2008;114(1):38–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Weinstein D, et al. Insulin analogues display IGF-I-like mitogenic and anti-apoptotic activities in cultured cancer cells. Diabetes Metab Res Rev. 2009;25(1):41–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Bloomgarden Z, Handelsman Y. Cancer mortality and insulin glargine. J Diabetes. 2009;1(3):131–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Colhoun HM. Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia. 2009;52(9):1755–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009;52(9):1766–77.PubMedCrossRefGoogle Scholar
  16. 16.
    Dejgaard A, et al. No evidence of increased risk of malignancies in patients with diabetes treated with insulin detemir: a meta-analysis. Diabetologia. 2009;52(12):2507–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Gale EA. Insulin glargine and cancer: another side to the story? Lancet. 2009;374(9689):521.PubMedCrossRefGoogle Scholar
  18. 18.
    Garg SK, Hirsch IB, Skyler JS. Insulin glargine and cancer–an unsubstantiated allegation. Diabetes Technol Ther. 2009;11(8):473–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Hemkens LG, et al. Insulin glargine and cancer. Lancet. 2009;374(9703):1743–4. author reply 1744.PubMedCrossRefGoogle Scholar
  20. 20.
    Hemkens LG, et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia. 2009;52(9):1732–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Home PD, Lagarenne P. Combined randomised controlled trial experience of malignancies in studies using insulin glargine. Diabetologia. 2009;52(12):2499–506.PubMedCrossRefGoogle Scholar
  22. 22.
    Idris I. Observational registry database studies link insulin glargine with cancer risk. Diabetes Obes Metab. 2009;11(9):910–2.PubMedCrossRefGoogle Scholar
  23. 23.
    Jonasson JM, et al. Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden. Diabetologia. 2009;52(9):1745–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Pocock SJ, Smeeth L. Insulin glargine and malignancy: an unwarranted alarm. Lancet. 2009;374(9689):511–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Rosenstock J, et al. Similar risk of malignancy with insulin glargine and neutral protamine Hagedorn (NPH) insulin in patients with type 2 diabetes: findings from a 5 year randomised, open-label study. Diabetologia. 2009;52(9):1971–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Dawson LK, Hamilton LA. Risk of cancer in patients receiving insulin glargine. Am J Health Syst Pharm. 2010;67(23):2025–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Hernandez-Diaz S, Adami HO. Diabetes therapy and cancer risk: causal effects and other plausible explanations. Diabetologia. 2010;53(5):802–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Nagel JM, et al. Insulin resistance and increased risk for malignant neoplasms: confounding of the data on insulin glargine. Diabetologia. 2010;53(1):206–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Bogdanov Jr AA, et al. A new macromolecule as a contrast agent for MR angiography: preparation, properties, and animal studies. Radiology. 1993;187(3):701–6.PubMedGoogle Scholar
  30. 30.
    Habeeb AFSA. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966;14(3):328–36.PubMedCrossRefGoogle Scholar
  31. 31.
    Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev. 2003;55(10):1261–77.PubMedCrossRefGoogle Scholar
  32. 32.
    Fishburn CS. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci. 2008;97(10):4167–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Bolli GB, Owens DR. Insulin glargine. Lancet. 2000;356(9228):443–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Gillies PS, Figgitt DP, Lamb HM. Insulin glargine. Drugs. 2000;59(2):253–60. discussion 261-2.PubMedCrossRefGoogle Scholar
  35. 35.
    Levien TL, et al. Insulin glargine: a new basal insulin. Ann Pharmacother. 2002;36(6):1019–27.PubMedCrossRefGoogle Scholar
  36. 36.
    Reinhart L, Panning CA. Insulin glargine: a new long-acting insulin product. Am J Health Syst Pharm. 2002;59(7):643–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sandra Reichstetter
    • 1
  • Gerardo M. Castillo
    • 1
  • ManShun Lai
    • 1
  • Akiko Nishimoto-Ashfield
    • 1
  • Aryamitra Banerjee
    • 2
  • Alexei Bogdanov
    • 3
  • Alexander V. Lyubimov
    • 2
  • Elijah M. Bolotin
    • 1
  1. 1.PharmaIN CorporationSeattleUSA
  2. 2.Toxicology Research Laboratory, Department of Pharmacology College of MedicineUniversity of Illinois at ChicagoChicagoUSA
  3. 3.University of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations