Pharmaceutical Research

, Volume 29, Issue 5, pp 1203–1218 | Cite as

Magnetic Nanoparticles Enhance Adenovirus Transduction In Vitro and In Vivo

Research Paper

ABSTRACT

Purpose

Adenoviruses are among the most powerful gene delivery systems. Even if they present low potential for oncogenesis, there is still a need for minimizing widespread delivery to avoid deleterious reactions. In this study, we investigated Magnetofection efficiency to concentrate and guide vectors for an improved targeted delivery.

Method

Magnetic nanoparticles formulations were complexed to a replication defective Adenovirus and were used to transduce cells both in vitro and in vivo. A new integrated magnetic procedure for cell sorting and genetic modification (i-MICST) was also investigated.

Results

Magnetic nanoparticles enhanced viral transduction efficiency and protein expression in a dose-dependent manner. They accelerated the transduction kinetics and allowed non-permissive cells infection. Magnetofection greatly improved adenovirus-mediated DNA delivery in vivo and provided a magnetic targeting. The i-MICST results established the efficiency of magnetic nanoparticles assisted viral transduction within cell sorting columns.

Conclusion

The results showed that the combination of Magnetofection and Adenoviruses represents a promising strategy for gene therapy. Recently, a new integrated method to combine clinically approved magnetic cell isolation devices and genetic modification was developed. In this study, we validated that magnetic cell separation and adenoviral transduction can be accomplished in one reliable integrated and safe system.

KEY WORDS

AdenoMag adenovirus in vivo transduction magnetic cell sorting magnetofection 

Notes

ACKNOWLEDGMENTS & DISCLOSURES

This research was supported by the European Union through the following projects: FP6-LIFESCIHEALTH Project “Magselectofection” Contract LSHB-CT-2006-19038; FP6-LIFESCIHEALTH Project “Epicure” Contract LSHM-CT-2006-037315 and FP7 EU-Project: Project “GAMBA” Contract NMP3-SL-2010-245993.

C.S., N.L., F.S. and O.Z. are employed by OZ Biosciences, which manufactures and distributes the AdenoMag and Viro-MICST products.

REFERENCES

  1. 1.
    Davison AJ, Benko M, Harrach B. Genetic content and evolution of adenoviruses. J Gen Virol. 2003;84(Pt 11):2895–908.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang WW. Development and application of adenoviral vectors for gene therapy of cancer. Canc Gene Ther. 1999;6(2):113–38.CrossRefGoogle Scholar
  3. 3.
    Palmer D, Ng P. Improved system for helper-dependent adenoviral vector production. Mol Ther. 2003;8(5):846–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Russell WC. Update on adenovirus and its vectors. J Gen Virol. 2000;81(Pt 11):2573–604.PubMedGoogle Scholar
  5. 5.
    Pandori M, Hobson D, Sano T. Adenovirus-microbead conjugates possess enhanced infectivity: a new strategy for localized gene delivery. Virology. 2002;299(2):204–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Nyanguile O, Dancik C, Blakemore J, Mulgrew K, Kaleko M, Stevenson SC. Synthesis of adenoviral targeting molecules by intein-mediated protein ligation. Gene Ther. 2003;10(16):1362–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Schnell MA, Zhang Y, Tazelaar J, Gao GP, Yu QC, Qian R, et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther. 2001;3(5 Pt 1):708–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Parker AL, Nicklin SA, Baker AH. Interactions of adenovirus vectors with blood: implications for intravascular gene therapy applications. Curr Opin Mol Ther. 2008;10(5):439–48.PubMedGoogle Scholar
  9. 9.
    Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M, et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther. 1999;6(9):1520–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Bergelson JM. Receptors mediating adenovirus attachment and internalization. Biochem Pharmacol. 1999;57(9):975–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Leopold PL, Crystal RG. Intracellular trafficking of adenovirus: many means to many ends. Adv Drug Deliv Rev. 2007;59(8):810–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Xu ZL, Mizuguchi H, Sakurai F, Koizumi N, Hosono T, Kawabata K, et al. Approaches to improving the kinetics of adenovirus-delivered genes and gene products. Adv Drug Deliv Rev. 2005;57(5):781–802.PubMedCrossRefGoogle Scholar
  13. 13.
    Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther. 2004;15(1):35–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Yei S, Mittereder N, Wert S, Whitsett JA, Wilmott RW, Trapnell BC. In vivo evaluation of the safety of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator cDNA to the lung. Hum Gene Ther. 1994;5(6):731–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Thomas CE, Birkett D, Anozie I, Castro MG, Lowenstein PR. Acute direct adenoviral vector cytotoxicity and chronic, but not acute, inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol Ther. 2001;3(1):36–46.PubMedCrossRefGoogle Scholar
  16. 16.
    Heise CC, Williams AM, Xue S, Propst M, Kirn DH. Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy. Cancer Res. 1999;59(11):2623–8.PubMedGoogle Scholar
  17. 17.
    Curiel DT. Rational design of viral vectors based on rigorous analysis of capsid structures. Mol Ther. 2000;1(1):3–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Krasnykh VN, Douglas JT, van Beusechem VW. Genetic targeting of adenoviral vectors. Mol Ther. 2000;1(5 Pt 1):391–405.PubMedCrossRefGoogle Scholar
  19. 19.
    Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9(2):102–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-Progress and prospects. Adv Drug Deliv Rev. 2011.Google Scholar
  21. 21.
    Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature. 2010;463(7281):676–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Sacha JB, Reynolds MR, Buechler MB, Chung C, Jonas AK, Wallace LT, et al. Differential antigen presentation kinetics of CD8+ T-cell epitopes derived from the same viral protein. J Virol. 2008;82(18):9293–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Orlando C, Castellani S, Mykhaylyk O, Copreni E, Zelphati O, Plank C, et al. Magnetically guided lentiviral-mediated transduction of airway epithelial cells. J Gene Med. 2010;12(9):747–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Sacha JB, Giraldo-Vela JP, Buechler MB, Martins MA, Maness NJ, Chung C, et al. Gag- and Nef-specific CD4+ T cells recognize and inhibit SIV replication in infected macrophages early after infection. Proc Natl Acad Sci U S A. 2009;106(24):9791–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Payne RP, Kloverpris H, Sacha JB, Brumme Z, Brumme C, Buus S, et al. Efficacious early antiviral activity of HIV Gag- and Pol-specific HLA-B 2705-restricted CD8+ T cells. J Virol;84(20):10543–57.Google Scholar
  26. 26.
    Kadota S, Kanayama T, Miyajima N, Takeuchi K, Nagata K. Enhancing of measles virus infection by magnetofection. J Virol Meth. 2005;128(1–2):61–6.CrossRefGoogle Scholar
  27. 27.
    Satoh S, Masatoshi S, Shou Z, Yamamoto T, Ishigure T, Semii A, et al. Identification of cis-regulatory elements and trans-acting proteins of the rat carbohydrate response element binding protein gene. Arch Biochem Biophys. 2007;461(1):113–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Satoh K, Iwata A, Murata M, Hikata M, Hayakawa T, Yamaguchi T. Virus concentration using polyethyleneimine-conjugated magnetic beads for improving the sensitivity of nucleic acid amplification tests. J Virol Meth. 2003;114(1):11–9.CrossRefGoogle Scholar
  29. 29.
    Schyth BD, Lorenzen N, Pedersen FS. A high throughput in vivo model for testing delivery and antiviral effects of siRNAs in vertebrates. Mol Ther. 2007;15(7):1366–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Raty JK, Airenne KJ, Marttila AT, Marjomaki V, Hytonen VP, Lehtolainen P, et al. Enhanced gene delivery by avidin-displaying baculovirus. Mol Ther. 2004;9(2):282–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Grard G, Moureau G, Charrel RN, Lemasson JJ, Gonzalez JP, Gallian P, et al. Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology. 2007;361(1):80–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Mah C, Fraites Jr TJ, Zolotukhin I, Song S, Flotte TR, Dobson J, et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther. 2002;6(1):106–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Chorny M, Fishbein I, Alferiev I, Levy RJ. Magnetically responsive biodegradable nanoparticles enhance adenoviral gene transfer in cultured smooth muscle and endothelial cells. Mol Pharm. 2009;6(5):1380–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Hashimoto M, Hisano Y. Directional gene-transfer into the brain by an adenoviral vector tagged with magnetic nanoparticles. J Neurosci Meth. 2011;194(2):316–20.CrossRefGoogle Scholar
  35. 35.
    Bhattarai SR, Kim SY, Jang KY, Lee KC, Yi HK, Lee DY, et al. Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line. J Virol Meth. 2008;147(2):213–8.CrossRefGoogle Scholar
  36. 36.
    Laurent N, Sapet C, Le Gourrierec L, Bertosio E, Zelphati O. Nucleic acid delivery using magnetic nanoparticles: the Magnetofection™ technology. Ther Deliv. 2011;2(4):471–82.CrossRefGoogle Scholar
  37. 37.
    Tresilwised N, Pithayanukul P, Mykhaylyk O, Holm PS, Holzmuller R, Anton M, et al. Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force. Mol Pharm. 2010;7(4):1069–89.PubMedCrossRefGoogle Scholar
  38. 38.
    Sapet C, Laurent N, Le Gourrierec L, Augier S, Zelphati O. In vitro and in vivo Magnetofection: a move towards gene therapy. Ann Biol Clin (Paris). 2010;68(2):133–42.Google Scholar
  39. 39.
    Sanchez-Antequera Y, Mykhaylyk O, van Til NP, Cengizeroglu A, de Jong JH, Huston MW, et al. Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells. Blood. 2011;117(16):e171–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Mathis JM, Stewart PL, Zhu ZB, Curiel DT. Advanced generation adenoviral virotherapy agents embody enhanced potency based upon CAR-independent tropism. Clin Cancer Res. 2006;12(9):2651–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Buerli T, Pellegrino C, Baer K, Lardi-Studler B, Chudotvorova I, Fritschy JM, et al. Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat Protoc. 2007;2(12):3090–101.PubMedCrossRefGoogle Scholar
  42. 42.
    Arcasoy SM, Latoche JD, Gondor M, Pitt BR, Pilewski JM. Polycations increase the efficiency of adenovirus-mediated gene transfer to epithelial and endothelial cells in vitro. Gene Ther. 1997;4(1):32–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Peixoto C, Ferreira TB, Sousa MF, Carrondo MJ, Alves PM. Towards purification of adenoviral vectors based on membrane technology. Biotechnol Prog. 2008;24(6):1290–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Sacha JB, Watkins DI. Synchronous infection of SIV and HIV in vitro for virology, immunology and vaccine-related studies. Nat Protoc. 2010;5(2):239–46.PubMedCrossRefGoogle Scholar
  45. 45.
    Preuss MA, Glasgow JN, Everts M, Stoff-Khalili MA, Wu H, Curiel DT. Enhanced gene delivery to human primary endothelial cells using tropism-modified adenovirus vectors. Open Gene Ther J. 2008;1:7–11.PubMedCrossRefGoogle Scholar
  46. 46.
    Bowers WJ, Breakefield XO, Sena-Esteves M. Genetic therapy for the nervous system. Hum Mol Genet;20(R1):R28-41.Google Scholar
  47. 47.
    Plank C, Anton M, Rudolph C, Rosenecker J, Krotz F. Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin Biol Ther. 2003;3(5):745–58.PubMedCrossRefGoogle Scholar
  48. 48.
    Ziello JE, Huang Y, Jovin IS. Cellular endocytosis and gene delivery. Mol Med. 2010;16(5–6):222–9.PubMedGoogle Scholar
  49. 49.
    Mohler 3rd ER, Rajagopalan S, Olin JW, Trachtenberg JD, Rasmussen H, Pak R, et al. Adenoviral-mediated gene transfer of vascular endothelial growth factor in critical limb ischemia: safety results from a phase I trial. Vasc Med. 2003;8(1):9–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Rajagopalan S, Mohler 3rd ER, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation. 2003;108(16):1933–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Flotte TR, Zeitlin PL, Reynolds TC, Heald AE, Pedersen P, Beck S, et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther. 2003;14(11):1079–88.PubMedCrossRefGoogle Scholar
  52. 52.
    Carter BJ. Adeno-associated virus vectors in clinical trials. Hum Gene Ther. 2005;16(5):541–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Carlisle RC, Di Y, Cerny AM, Sonnen AF, Sim RB, Green NK, et al. Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1. Blood. 2009;113(9):1909–18.PubMedCrossRefGoogle Scholar
  54. 54.
    Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A. Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol. 2005;79(12):7478–91.PubMedCrossRefGoogle Scholar
  55. 55.
    Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H, et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell. 2008;132(3):397–409.PubMedCrossRefGoogle Scholar
  56. 56.
    Smith JS, Xu Z, Tian J, Stevenson SC, Byrnes AP. Interaction of systemically delivered adenovirus vectors with Kupffer cells in mouse liver. Hum Gene Ther. 2008;19(5):547–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Prill JM, Espenlaub S, Samen U, Engler T, Schmidt E, Vetrini F, et al. Modifications of adenovirus hexon allow for either hepatocyte detargeting or targeting with potential evasion from Kupffer cells. Mol Ther. 2010;19(1):83–92.PubMedCrossRefGoogle Scholar
  58. 58.
    Mok H, Palmer DJ, Ng P, Barry MA. Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther. 2005;11(1):66–79.PubMedCrossRefGoogle Scholar
  59. 59.
    Jahnke A, Hirschberger J, Fischer C, Brill T, Kostlin R, Plank C, et al. Intra-tumoral gene delivery of feIL-2, feIFN-gamma and feGM-CSF using magnetofection as a neoadjuvant treatment option for feline fibrosarcomas: a phase-I study. J Vet Med A Physiol Pathol Clin Med. 2007;54(10):599–606.PubMedCrossRefGoogle Scholar
  60. 60.
    Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, Wiekhorst F, et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol. 2007;2(8):495–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009;23(1):35–58.PubMedCrossRefGoogle Scholar
  62. 62.
    Saito T, Nakatsuji N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol. 2001;240(1):237–46.PubMedCrossRefGoogle Scholar
  63. 63.
    Takahashi M, Sato K, Nomura T, Osumi N. Manipulating gene expressions by electroporation in the developing brain of mammalian embryos. Differentiation. 2002;70(4–5):155–62.PubMedCrossRefGoogle Scholar
  64. 64.
    Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 2009;27(1):59–65.PubMedCrossRefGoogle Scholar
  65. 65.
    Minang JT, Trivett MT, Barsov EV, Del Prete GQ, Trubey CM, Thomas JA, et al. TCR triggering transcriptionally downregulates CCR5 expression on rhesus macaque CD4(+) T-cells with no measurable effect on susceptibility to SIV infection. Virology 2011.Google Scholar
  66. 66.
    Greene JM, Lhost JJ, Burwitz BJ, Budde ML, Macnair CE, Weiker MK, et al. Extralymphoid CD8+ T cells resident in tissue from simian immunodeficiency virus SIVmac239{Delta}nef-vaccinated macaques suppress SIVmac239 replication ex vivo. J Virol. 2010;84(7):3362–72.PubMedCrossRefGoogle Scholar
  67. 67.
    Sacha JB, Buechler MB, Newman LP, Reed J, Wallace LT, Loffredo JT, et al. Simian immunodeficiency virus-specific CD8+ T cells recognize Vpr- and Rev-derived epitopes early after infection. J Virol. 2010;84(20):10907–12.PubMedCrossRefGoogle Scholar
  68. 68.
    Berro R, Sanders RW, Lu M, Klasse PJ, Moore JP. Two HIV-1 variants resistant to small molecule CCR5 inhibitors differ in how they use CCR5 for entry. PLoS Pathog. 2009;5(8):e1000548.PubMedCrossRefGoogle Scholar
  69. 69.
    Payne RP, Kloverpris H, Sacha JB, Brumme Z, Brumme C, Buus S, et al. Efficacious early antiviral activity of HIV Gag- and Pol-specific HLA-B 2705-restricted CD8+ T cells. J Virol. 2010;84(20):10543–57.PubMedCrossRefGoogle Scholar
  70. 70.
    Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, et al. Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev Biol. 2010;338(2):202–14.PubMedCrossRefGoogle Scholar
  71. 71.
    Nakatani T, Kumai M, Mizuhara E, Minaki Y, Ono Y. Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Dev Biol. 2010;339(1):101–13.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang X, Mani P, Sarkar DP, Roy-Chowdhury N, Roy-Chowdhury J. Ex vivo gene transfer into hepatocytes. Methods Mol Biol. 2009;481:117–40.PubMedGoogle Scholar
  73. 73.
    Burdorf L, Schuhmann N, Postrach J, Thein E, Hallek M, Reichart B, et al. AAV-mediated gene transfer to cardiac cells in a heterotopic rat heart transplantation model. Transplant Proc. 2007;39(2):567–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Hofmann A, Wenzel D, Becher UM, Freitag DF, Klein AM, Eberbeck D, et al. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. Proc Natl Acad Sci U S A. 2009;106(1):44–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.OZ BiosciencesParc Scientifique de LuminyMarseille cedex 9France
  2. 2.INSERM UMR S901, Institut de Neurobiologie de la Méditerranée (INMED)Parc Scientifique de LuminyMarseille cedex 09France

Personalised recommendations