Pharmaceutical Research

, Volume 29, Issue 3, pp 837–846 | Cite as

Mesoporous Silicon (PSi) for Sustained Peptide Delivery: Effect of PSi Microparticle Surface Chemistry on Peptide YY3-36 Release

  • Miia Kovalainen
  • Juha Mönkäre
  • Ermei Mäkilä
  • Jarno Salonen
  • Vesa-Pekka Lehto
  • Karl-Heinz Herzig
  • Kristiina Järvinen
Research Paper



To achieve sustained peptide delivery via mesoporous silicon (PSi) microparticles and to evaluate the effects of different surface chemistries on peptide YY3-36 (PYY3-36) delivery.


PYY3-36 was loaded into thermally oxidized (TOPSi), thermally hydrocarbonized (THCPSi) and undecylenic acid treated THCPSi (UnTHCPSi) microparticles with comparable porous properties. In vitro, PYY3-36 release was investigated by centrifuge. In vivo, PYY3-36 plasma concentrations were analyzed after delivery in microparticles or solution.


Achieved loading degrees were high (12.2 – 16.0% w/w). PYY3-36 release was sustained from all microparticles; order of PYY3-36 release was TOPSi > THCPSi > UnTHCPSi both in vitro and in vivo. In mice, PSi microparticles achieved sustained PYY3-36 release over 4 days, whereas PYY3-36 solution was eliminated in 12 h. In vitro, only 27.7, 14.5 and 6.2% of loaded PYY3-36 was released from TOPSi, THCPSi and UnTHCPSi, respectively. Absolute PYY3-36 bioavailabilities were 98, 13, 9 and 38% when delivered subcutaneously in TOPSi, THCPSi, UnTHCPSi and solution, respectively. The results clearly demonstrate improved bioavailability of PYY3-36 via TOPSi and the importance of surface chemistry of PSi on peptide release.


PSi represents a promising sustained and tailorable release system for PYY3-36.


in vivo mesoporous silicon peptide delivery pharmacokinetics PYY3-36 



porous silicon


thermally hydrocarbonized porous silicon


thermally oxidized porous silicon


undecylenic acid treated thermally hydrocarbonized porous silicon



This study was financially supported by Finnish Cultural Foundation (MK), Orion Farmos Research Foundation (MK), Graduate School of Pharmaceutical Research (JM), Academy of Finland – PEPBI consortium (#117906, #118002, #217547) and the strategic funding of the University of Eastern Finland (NAMBER consortium).

Supplementary material

11095_2011_611_MOESM1_ESM.tif (8.1 mb)
High Resolution Image (TIFF 8260 kb)
11095_2011_611_MOESM2_ESM.tif (8.7 mb)
High Resolution Image (TIFF 8939 kb)


  1. 1.
    Salonen J, Kaukonen AM, Hirvonen J, Lehto VP. Mesoporous silicon in drug delivery applications. J Pharm Sci. 2008;97:632–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Mäkilä E, Laaksonen T, et al. Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano. 2010;4:3023–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Tanaka T, Godin B, Bhavane R, Nieves-Alicea R, Gu J, Liu X, et al. In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. Int J Pharm. 2010;402:190–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Limnell T, Riikonen J, Salonen J, Kaukonen AM, Laitinen L, Hirvonen J, et al. Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles. Int J Pharm. 2007;343:141–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, et al. Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release. 2005;108:362–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Karlsson LM, Tengvall P, Lundström I, Arwin H. Penetration and loading of human serum albumin in porous silicon layers with different pore sizes and thicknesses. J Colloid Interface Sci. 2003;266:40–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Prestidge CA, Barnes TJ, Mierczynska-Vasilev A, Kempson I, Peddie F, Barnett C. Peptide and protein loading into porous silicon wafers. Phys Stat Sol (a). 2008;205:311–5.CrossRefGoogle Scholar
  8. 8.
    Prestidge CA, Barnes TJ, Mierczynska-Vasilev A, Skinner W, Peddie F, Barnett C. Loading and release of a model protein from porous silicon powders. Phys Stat Sol (a). 2007;204:3361–6.CrossRefGoogle Scholar
  9. 9.
    Wang F, Hui H, Barnes TJ, Barnett C, Prestidge CA. Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs. Mol Pharm. 2010;7:227–36.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu EC, Park JH, Park J, Segal E, Cunin F, Sailor MJ. Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano. 2008;2:2401–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Foraker AB, Walczak RJ, Cohen MH, Boiarski TA, Grove CF, Swaan PW. Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal Caco-2 cell monolayers. Pharm Res. 2003;20:110–6.PubMedCrossRefGoogle Scholar
  12. 12.
    De Rosa E, Chiappini C, Fan D, Liu X, Ferrari M, Tasciotti E. Agarose surface coating influences intracellular accumulation and enhances payload stability of a nano-delivery system. Pharm Res. 2011;28:1520–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Kilpeläinen M, Riikonen J, Vlasova MA, Huotari A, Lehto VP, Salonen J, et al. In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. J Control Release. 2009;137:166–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Kilpeläinen M, Mönkäre J, Vlasova MA, Riikonen J, Lehto VP, Salonen J, et al. Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery. Eur J Pharm Biopharm. 2011;77:20–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 2005;4:298–306.PubMedCrossRefGoogle Scholar
  16. 16.
    Witschi C, Doelker E. Peptide degradation during preparation and in vitro release testing of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) microparticles. Int J Pharm. 1998;171:1–18.CrossRefGoogle Scholar
  17. 17.
    Ye M, Kim S, Park K. Issues in long-term protein delivery using biodegradable microparticles. J Control Release. 2010;146:241–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Salonen J, Björkqvist M, Laine E, Niinistö L. Stabilization of porous silicon surface by thermal decomposition of acetylene. App Surf Science. 2004;225:389–94.CrossRefGoogle Scholar
  19. 19.
    Karhunen LJ, Juvonen KR, Huotari A, Purhonen AK, Herzig KH. Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept. 2008;149:70–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Tatemoto K, Mutt V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature. 1980;285:417–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Nonaka N, Shioda S, Niehoff ML, Banks WA. Characterization of blood–brain barrier permeability to PYY3-36 in the mouse. J Pharmacol Exp Ther. 2003;306:948–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Koegler FH, Enriori PJ, Billes SK, Takahashi DL, Martin MS, Clark RL, et al. Peptide YY(3–36) inhibits morning, but not evening, food intake and decreases body weight in rhesus macaques. Diabetes. 2005;54:3198–204.PubMedCrossRefGoogle Scholar
  23. 23.
    Beglinger C, Poller B, Arbit E, Ganzoni C, Gass S, Gomez-Orellana I, et al. Pharmacokinetics and pharmacodynamic effects of oral GLP-1 and PYY3-36: a proof-of-concept study in healthy subjects. Clin Pharmacol Ther. 2008;84:468–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Chelikani PK, Haver AC, Reeve Jr JR, Keire DA, Reidelberger RD. Daily, intermittent intravenous infusion of peptide YY(3–36) reduces daily food intake and adiposity in rats. Am J Physiol Regul Integr Comp Physiol. 2006;290:R298–305.PubMedCrossRefGoogle Scholar
  25. 25.
    Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature. 2002;418:650–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Abbott CR, Small CJ, Kennedy AR, Neary NM, Sajedi A, Ghatei MA, et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3–36) on food intake. Brain Res. 2005;1043:139–44.PubMedCrossRefGoogle Scholar
  28. 28.
    van den Hoek AM, Heijboer AC, Voshol PJ, Havekes LM, Romijn JA, Corssmit EP, et al. Chronic PYY3-36 treatment promotes fat oxidation and ameliorates insulin resistance in C57BL6 mice. Am J Physiol Endocrinol Metab. 2007;292:E238–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Karra E, Chandarana K, Batterham RL. The role of peptide YY in appetite regulation and obesity. J Physiol. 2009;587:19–25.PubMedCrossRefGoogle Scholar
  30. 30.
    Chandarana K, Batterham R, Peptide YY. Curr Opin Endocrinol Diabetes Obes. 2008;15:65–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Karra E, Batterham RL. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol Cell Endocrinol. 2010;316:120–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Shechter Y, Tsubery H, Mironchik M, Rubinstein M, Fridkin M. Reversible PEGylation of peptide YY3-36 prolongs its inhibition of food intake in mice. FEBS Lett. 2005;579:2439–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Gantz I, Erondu N, Mallick M, Musser B, Krishna R, Tanaka WK, et al. Efficacy and safety of intranasal peptide YY3-36 for weight reduction in obese adults. J Clin Endocrinol Metab. 2007;92:1754–7.PubMedCrossRefGoogle Scholar
  34. 34.
    A Study of Nasal PYY3-36 and Placebo for Weight Loss in Obese Subjects. ClinicalTrials.Gov. 2011 June 10. Available from:
  35. 35.
    Akers JM, DeFelippis RM. Peptides. In: Frokjaer S, Hovgaard L, editors. Pharmaceutical formulation development of peptides and proteins. London: CRC; 1999. p. 145–77.Google Scholar
  36. 36.
    Boukherroub R, Wojtyk JTC, Wayner DDM, Lockwood DJ. Thermal hydrosilylation of undecylenic acid with porous silicon. J Electrochem Soc. 2002;149:H59–63.CrossRefGoogle Scholar
  37. 37.
    Brunauer S, Emmett P, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.CrossRefGoogle Scholar
  38. 38.
    Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73:373–80.CrossRefGoogle Scholar
  39. 39.
    Lehto VP, Vähä-Heikkilä K, Paski J, Salonen J. Use of thermoanalytical methods in quantification of drug load in mesoporous silicon microparticles. J Therm Anal Calorimetry. 2005;80:393–7.CrossRefGoogle Scholar
  40. 40.
    Arrondo JL, Goni FM. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol. 1999;72:367–405.PubMedCrossRefGoogle Scholar
  41. 41.
    Boxenbaum H. Pharmacokinetics tricks and traps: flip-flop models. J Pharm Pharm Sci. 1998;1:90–1.PubMedGoogle Scholar
  42. 42.
    Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8:331–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Leoni L, Boiarski A, Desai TA. Characterization of nanoporous membranes for immunoisolation: Diffusion properties and tissue effects. Biomed Microdevices. 2002;4:131–9.CrossRefGoogle Scholar
  44. 44.
    Hegefeld WA, Kuczera K, Jas GS. Structural dynamics of neuropeptide hPYY. Biopolymers. 2011;95:487–502.PubMedCrossRefGoogle Scholar
  45. 45.
    Godin B, Gu J, Serda RE, Bhavane R, Tasciotti E, Chiappini C, et al. Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J Biomed Mater Res Part A. 2010;94A:1236–43.Google Scholar
  46. 46.
    Jarvis KL, Barnes TJ, Prestidge CA. Thermal oxidation for controlling protein interactions with porous silicon. Langmuir: the ACS journal of surfaces and colloids. 2010;26:14316–22.CrossRefGoogle Scholar
  47. 47.
    Felsovalyi F, Mangiagalli P, Bureau C, Kumar SK, Banta S (2011) Reversibility of the adsorption of lysozyme on silica. Langmuir; doi: 10.1021/la202585r.
  48. 48.
    Kaukonen AM, Laitinen L, Salonen J, Tuura J, Heikkilä T, Limnell T, et al. Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles. Eur J Pharm Biopharm. 2007;66:348–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Miia Kovalainen
    • 1
  • Juha Mönkäre
    • 1
  • Ermei Mäkilä
    • 2
  • Jarno Salonen
    • 2
  • Vesa-Pekka Lehto
    • 3
  • Karl-Heinz Herzig
    • 4
    • 5
  • Kristiina Järvinen
    • 1
  1. 1.School of Pharmacy, Pharmaceutical Technology, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
  2. 2.Department of Physics and AstronomyUniversity of TurkuTurkuFinland
  3. 3.Faculty of Science and Forestry, Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
  4. 4.Institute of Biomedicine, Biocenter of Oulu University of OuluOuluFinland
  5. 5.Department of PsychiatryKuopio University HospitalKuopioFinland

Personalised recommendations