Pharmaceutical Research

, Volume 28, Issue 12, pp 2996–3015 | Cite as

Subcellular Fate and Off-Target Effects of siRNA, shRNA, and miRNA

  • Saurabh Singh
  • Ajit S. Narang
  • Ram I. Mahato
Expert Review


RNA interference (RNAi) strategies include double-stranded RNA (dsRNA), small interfering RNA (siRNA), short hairpin RNA (shRNA), and microRNA (miRNA). As this is a highly specific technique, efforts have been made to utilize RNAi towards potential knock down of disease-causing genes in a targeted fashion. RNAi has the potential to selectively inhibit gene expression by degrading or blocking the translation of the target mRNA. However, delivering these RNAs to specific cells presents a significant challenge. Some of these challenges result from the necessity of traversing the circulatory system while avoiding kidney filtration, degradation by endonucleases, aggregation with serum proteins, and uptake by phagocytes. Further, non-specific delivery may result in side-effects, including the activation of immune response. We discuss the challenges in the systemic delivery to target cells, cellular uptake, endosomal release and intracellular transport of RNAi drugs and recent progress in overcoming these barriers. We also discuss approaches that increase the specificity and metabolic stability and reduce the off-target effects of RNAi strategy.


cellular uptake intracellular trafficking miRNA RNA interference shRNA siRNA 



The National Institutes of Health (NIH) is gratefully acknowledged for financial support (RO1 DK69968), the Department of Defense (W81XWH-10-1-0969) and Kosten Foundation.


  1. 1.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell. 1998;95:1017–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Kennerdell JR, Carthew RW. Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol. 2000;18:896–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhou Y, Ching YP, Kok KH, Kung HF, Jin DY. Post-transcriptional suppression of gene expression in Xenopus embryos by small interfering RNA. Nucleic Acids Res. 2002;30:1664–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Li YX, Farrell MJ, Liu R, Mohanty N, Kirby ML. Double-stranded RNA injection produces null phenotypes in zebrafish. Dev Biol. 2000;217:394–405.PubMedCrossRefGoogle Scholar
  6. 6.
    Svoboda P, Stein P, Schultz RM. RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochem Biophys Res Commun. 2001;287:1099–104.PubMedCrossRefGoogle Scholar
  7. 7.
    McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA. RNA interference in adult mice. Nature. 2002;418:38–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Tuschl T. RNA interference and small interfering RNAs. Chembiochem. 2001;2:239–45.PubMedCrossRefGoogle Scholar
  9. 9.
    Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Gonczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR, et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature. 2000;408:331–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Bertrand JR, Pottier M, Vekris A, Opolon P, Maksimenko A, Malvy C. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun. 2002;296:1000–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Toth J, Boszormenyi I, Majer ZS, Laczko I, Malvy C, Hollosi M, et al. A two step model aimed at delivering antisense oligonucleotides in targeted cells. Biochem Biophys Res Commun. 2002;293:18–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Ye Z, Cheng K, Guntaka RV, Mahato RI. Targeted delivery of a triplex-forming oligonucleotide to hepatic stellate cells. Biochemistry. 2005;44:4466–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Ye Z, Guntaka RV, Mahato RI. Sequence-specific triple helix formation with genomic DNA. Biochemistry. 2007;46:11240–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Cheng K, Ye Z, Guntaka RV, Mahato RI. Biodistribution and hepatic uptake of triplex-forming oligonucleotides against type alpha1(I) collagen gene promoter in normal and fibrotic rats. Mol Pharm. 2005;2:206–17.PubMedCrossRefGoogle Scholar
  16. 16.
    Panakanti R, Pratap A, Yang N, Jackson JS, Mahato RI. Triplex forming oligonucleotides against type alpha1(I) collagen attenuates liver fibrosis induced by bile duct ligation. Biochem Pharmacol. 2010;80:1718–26.PubMedCrossRefGoogle Scholar
  17. 17.
    Miyagishi M, Hayashi M, Taira K. Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev. 2003;13:1–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med. 2003;9:347–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Karpala AJ, Doran TJ, Bean AG. Immune responses to dsRNA: implications for gene silencing technologies. Immunol Cell Biol. 2005;83:211–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Shim MS, Kwon YJ. Efficient and targeted delivery of siRNA in vivo. FEBS J. 2010;277:4814–27.PubMedCrossRefGoogle Scholar
  22. 22.
    Pushparaj PN, Melendez AJ. Short interfering RNA (siRNA) as a novel therapeutic. Clin Exp Pharmacol Physiol. 2006;33:504–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38.PubMedCrossRefGoogle Scholar
  24. 24.
    Gil J, Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis. 2000;5:107–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Davidson BL, McCray Jr PB. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011;12:329–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008;452:591–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21:635–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001;15:188–200.PubMedCrossRefGoogle Scholar
  30. 30.
    Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science. 2005;309:1519–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 2004;117:69–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15:185–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–41.PubMedCrossRefGoogle Scholar
  34. 34.
    Rand TA, Ginalski K, Grishin NV, Wang X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci U S A. 2004;101:14385–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Rand TA, Petersen S, Du F, Wang X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell. 2005;123:621–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431:343–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific-silencing in mammalian cells. Genes Dev. 2002;16:948–58.PubMedCrossRefGoogle Scholar
  38. 38.
    Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett. 2005;579:5974–81.PubMedCrossRefGoogle Scholar
  39. 39.
    de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6:443–53.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang HW, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K, et al. Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol. 2009;16:1148–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRefGoogle Scholar
  42. 42.
    Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:21–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.PubMedCrossRefGoogle Scholar
  44. 44.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432:231–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303:95–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell. 2002;9:1327–33.PubMedCrossRefGoogle Scholar
  48. 48.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Ann Med. 2008;40:197–208.PubMedCrossRefGoogle Scholar
  50. 50.
    Jeong HC, Kim EK, Lee JH, Lee JM, Yoo HN, Kim JK. Aberrant expression of let-7a miRNA in the blood of non-small cell lung cancer patients. Mol Med Report. 2011;4:383–7.PubMedGoogle Scholar
  51. 51.
    Mallick R, Patnaik SK, Yendamuri S. MicroRNAs and lung cancer: Biology and applications in diagnosis and prognosis. J Carcinog. 2010;9.Google Scholar
  52. 52.
    Patnaik SK, Mallick R, Yendamuri S. Detection of microRNAs in dried serum blots. Anal Biochem. 2010;407:147–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Rothe F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, et al. Global MicroRNA expression profiling identifies MiR-210 associated with tumor proliferation. Invasion and Poor Clinical Outcome in Breast Cancer. PLoS One. 2011;6:e20980.PubMedCrossRefGoogle Scholar
  54. 54.
    Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG, et al. miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One. 2011;6:e16915.PubMedCrossRefGoogle Scholar
  55. 55.
    Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98.PubMedCrossRefGoogle Scholar
  56. 56.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005;438:685–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Collison A, Herbert C, Siegle JS, Mattes J, Foster PS, Kumar RK. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm Med. 2011;11:29.PubMedCrossRefGoogle Scholar
  58. 58.
    Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M, et al. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One. 2008;3:e2236.PubMedCrossRefGoogle Scholar
  59. 59.
    Kaiser PK, Symons RC, Shah SM, Quinlan EJ, Tabandeh H, Do DV, et al. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol. 2010;150:33–9. e32.PubMedCrossRefGoogle Scholar
  60. 60.
    DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A. 2010;107:8800–5.PubMedCrossRefGoogle Scholar
  61. 61.
    DeVincenzo J, Cehelsky JE, Alvarez R, Elbashir S, Harborth J, Toudjarska I, et al. Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antiviral Res. 2008;77:225–31.PubMedCrossRefGoogle Scholar
  62. 62.
    Querbes W, Ge P, Zhang W, Fan Y, Costigan J, Charisse K, et al. Direct CNS delivery of siRNA mediates robust silencing in oligodendrocytes. Oligonucleotides. 2009;19:23–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Jiang N, Zhang X, Zheng X, Chen D, Zhang Y, Siu LK et al. Targeted gene silencing of TLR4 using liposomal nanoparticles for preventing liver ischemia reperfusion injury. Am J Transplant. 2011.Google Scholar
  64. 64.
    Sonoke S, Ueda T, Fujiwara K, Kuwabara K, Yano J. Galactose-modified cationic liposomes as a liver-targeting delivery system for small interfering RNA. Biol Pharm Bull. 2011;34:1338–42.PubMedCrossRefGoogle Scholar
  65. 65.
    Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, Kashimori I, et al. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res. 2004;10:7721–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Sonoke S, Ueda T, Fujiwara K, Sato Y, Takagaki K, Hirabayashi K, et al. Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes. Cancer Res. 2008;68:8843–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.PubMedGoogle Scholar
  68. 68.
    Fang J, Sawa T, Maeda H. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol. 2003;519:29–49.PubMedCrossRefGoogle Scholar
  69. 69.
    Zamecnik J, Vargova L, Homola A, Kodet R, Sykova E. Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol Appl Neurobiol. 2004;30:338–50.PubMedCrossRefGoogle Scholar
  70. 70.
    Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther. 2005;12:468–74.PubMedCrossRefGoogle Scholar
  71. 71.
    Ruthardt N, Lamb DC, Brauchle C. Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol Ther. 2011;19:1199–211.PubMedCrossRefGoogle Scholar
  72. 72.
    von Gersdorff K, Sanders NN, Vandenbroucke R, De Smedt SC, Wagner E, Ogris M. The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther. 2006;14:745–53.CrossRefGoogle Scholar
  73. 73.
    Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995;92:7297–301.PubMedCrossRefGoogle Scholar
  74. 74.
    Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A. 2007;104:12982–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Chiu YL, Ali A, Chu CY, Cao H, Rana TM. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol. 2004;11:1165–75.PubMedCrossRefGoogle Scholar
  76. 76.
    Jarve A, Muller J, Kim IH, Rohr K, MacLean C, Fricker G, et al. Surveillance of siRNA integrity by FRET imaging. Nucleic Acids Res. 2007;35:e124.PubMedCrossRefGoogle Scholar
  77. 77.
    Leonetti JP, Mechti N, Degols G, Gagnor C, Lebleu B. Intracellular distribution of microinjected antisense oligonucleotides. Proc Natl Acad Sci U S A. 1991;88:2702–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Shin S, Kwon HM, Yoon KS, Kim DE, Hah SS. FRET-based probing to gain direct information on siRNA sustainability in live cells: asymmetric degradation of siRNA strands. Mol Biosyst. 2011;7:2110–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Berezhna SY, Supekova L, Supek F, Schultz PG, Deniz AA. siRNA in human cells selectively localizes to target RNA sites. Proc Natl Acad Sci U S A. 2006;103:7682–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Ohrt T, Mutze J, Staroske W, Weinmann L, Hock J, Crell K, et al. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res. 2008;36:6439–49.PubMedCrossRefGoogle Scholar
  81. 81.
    Guang S, Bochner AF, Pavelec DM, Burkhart KB, Harding S, Lachowiec J, et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science. 2008;321:537–41.PubMedCrossRefGoogle Scholar
  82. 82.
    Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10:185–91.PubMedCrossRefGoogle Scholar
  83. 83.
    Ohrt T, Merkle D, Birkenfeld K, Echeverri CJ, Schwille P. In situ fluorescence analysis demonstrates active siRNA exclusion from the nucleus by Exportin 5. Nucleic Acids Res. 2006;34:1369–80.PubMedCrossRefGoogle Scholar
  84. 84.
    Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA. 2005;11:220–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Paddison PJ, Caudy AA, Hannon GJ. Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci U S A. 2002;99:1443–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Brownawell AM, Macara IG. Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. J Cell Biol. 2002;156:53–64.PubMedCrossRefGoogle Scholar
  88. 88.
    Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–3.PubMedCrossRefGoogle Scholar
  89. 89.
    Gwizdek C, Ossareh-Nazari B, Brownawell AM, Doglio A, Bertrand E, Macara IG, et al. Exportin-5 mediates nuclear export of minihelix-containing RNAs. J Biol Chem. 2003;278:5505–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A. 2003;100:9779–84.PubMedCrossRefGoogle Scholar
  91. 91.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Chiu YL, Rana TM. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell. 2002;10:549–61.PubMedCrossRefGoogle Scholar
  93. 93.
    Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell. 2001;107:309–21.PubMedCrossRefGoogle Scholar
  94. 94.
    Cheng G, Zhu L, Mahato RI. Caspase-3 gene silencing for inhibiting apoptosis in insulinoma cells and human islets. Mol Pharm. 2008;5:1093–102.PubMedCrossRefGoogle Scholar
  95. 95.
    Groenenboom MA, Maree AF, Hogeweg P. The RNA silencing pathway: the bits and pieces that matter. PLoS Comput Biol. 2005;1:155–65.PubMedCrossRefGoogle Scholar
  96. 96.
    Bergstrom CT, McKittrick E, Antia R. Mathematical models of RNA silencing: unidirectional amplification limits accidental self-directed reactions. Proc Natl Acad Sci U S A. 2003;100:11511–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Raab RM, Stephanopoulos G. Dynamics of gene silencing by RNA interference. Biotechnol Bioeng. 2004;88:121–32.PubMedCrossRefGoogle Scholar
  98. 98.
    Bartlett DW, Davis ME. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnol Bioeng. 2007;97:909–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Omi K, Tokunaga K, Hohjoh H. Long-lasting RNAi activity in mammalian neurons. FEBS Lett. 2004;558:89–95.PubMedCrossRefGoogle Scholar
  100. 100.
    Song E, Lee SK, Dykxhoorn DM, Novina C, Zhang D, Crawford K, et al. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol. 2003;77:7174–81.PubMedCrossRefGoogle Scholar
  101. 101.
    Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA. In vivo activity of nuclease-resistant siRNAs. RNA. 2004;10:766–71.PubMedCrossRefGoogle Scholar
  102. 102.
    Strapps WR, Pickering V, Muiru GT, Rice J, Orsborn S, Polisky BA, et al. The siRNA sequence and guide strand overhangs are determinants of in vivo duration of silencing. Nucleic Acids Res. 2010;38:4788–97.PubMedCrossRefGoogle Scholar
  103. 103.
    Raemdonck K, Remaut K, Lucas B, Sanders NN, Demeester J, De Smedt SC. In situ analysis of single-stranded and duplex siRNA integrity in living cells. Biochemistry. 2006;45:10614–23.PubMedCrossRefGoogle Scholar
  104. 104.
    Hoerter JA, Krishnan V, Lionberger TA, Walter NG. siRNA-like double-stranded RNAs are specifically protected against degradation in human cell extract. PLoS One. 2011;6:e20359.PubMedCrossRefGoogle Scholar
  105. 105.
    Elbashir SM, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods. 2002;26:199–213.PubMedCrossRefGoogle Scholar
  106. 106.
    Tiscornia G, Singer O, Ikawa M, Verma IM. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A. 2003;100:1844–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet. 2003;33:401–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Qin XJ, Dai DJ, Gao ZG, Huan JL, Zhu L. Effect of lentivirus-mediated shRNA targeting VEGFR-3 on proliferation, apoptosis and invasion of gastric cancer cells. Int J Mol Med. 2011.Google Scholar
  109. 109.
    Jiang R, Xue S, Jin Z. Stable knockdown of MYCN by lentivirus-based RNAi inhibits human neuroblastoma cells growth in vitro and in vivo. Biochem Biophys Res Commun. 2011;410:364–70.PubMedCrossRefGoogle Scholar
  110. 110.
    Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods. 2006;3:777–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12:1179–87.PubMedCrossRefGoogle Scholar
  112. 112.
    Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 2010;9:57–67.PubMedCrossRefGoogle Scholar
  113. 113.
    Lin X, Ruan X, Anderson MG, McDowell JA, Kroeger PE, Fesik SW, et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 2005;33:4527–35.PubMedCrossRefGoogle Scholar
  114. 114.
    Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA. 2007;13:1894–910.PubMedCrossRefGoogle Scholar
  115. 115.
    Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115:199–208.PubMedCrossRefGoogle Scholar
  116. 116.
    Burchard J, Jackson AL, Malkov V, Needham RH, Tan Y, Bartz SR, et al. MicroRNA-like off-target transcript regulation by siRNAs is species specific. RNA. 2009;15:308–15.PubMedCrossRefGoogle Scholar
  117. 117.
    Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol. 2006;24:559–65.PubMedCrossRefGoogle Scholar
  118. 118.
    Ge Q, Dallas A, Ilves H, Shorenstein J, Behlke MA, Johnston BH. Effects of chemical modification on the potency, serum stability, and immunostimulatory properties of short shRNAs. RNA. 2010;16:118–30.PubMedCrossRefGoogle Scholar
  119. 119.
    Goodchild A, Nopper N, King A, Doan T, Tanudji M, Arndt GM, et al. Sequence determinants of innate immune activation by short interfering RNAs. BMC Immunol. 2009;10:40.PubMedCrossRefGoogle Scholar
  120. 120.
    Marques JT, Williams BR. Activation of the mammalian immune system by siRNAs. Nat Biotechnol. 2005;23:1399–405.PubMedCrossRefGoogle Scholar
  121. 121.
    Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahashi F, et al. Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res. 2008;36:2136–51.PubMedCrossRefGoogle Scholar
  122. 122.
    Judge A, MacLachlan I. Overcoming the innate immune response to small interfering RNA. Hum Gene Ther. 2008;19:111–24.PubMedCrossRefGoogle Scholar
  123. 123.
    Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11:263–70.PubMedCrossRefGoogle Scholar
  124. 124.
    Diebold SS, Kaisho T, Hemmi H, Akira S, Reis C. e Sousa. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303:1529–31.PubMedCrossRefGoogle Scholar
  125. 125.
    Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303:1526–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol. 2005;23:457–62.PubMedCrossRefGoogle Scholar
  127. 127.
    Armstrong ME, Gantier M, Li L, Chung WY, McCann A, Baugh JA, et al. Small interfering RNAs induce macrophage migration inhibitory factor production and proliferation in breast cancer cells via a double-stranded RNA-dependent protein kinase-dependent mechanism. J Immunol. 2008;180:7125–33.PubMedGoogle Scholar
  128. 128.
    Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441:537–41.PubMedCrossRefGoogle Scholar
  129. 129.
    Borel F, van Logtenstein R, Koornneef A, Maczuga P, Ritsema T, Petry H, et al. In vivo knock-down of multidrug resistance transporters ABCC1 and ABCC2 by AAV-delivered shRNAs and by artificial miRNAs. J RNAi Gene Silencing. 2011;7:434–42.PubMedGoogle Scholar
  130. 130.
    Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol. 2009;27:549–55.PubMedCrossRefGoogle Scholar
  131. 131.
    Giering JC, Grimm D, Storm TA, Kay MA. Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther. 2008;16:1630–6.PubMedCrossRefGoogle Scholar
  132. 132.
    Scaggiante B, Dapas B, Farra R, Grassi M, Pozzato G, Giansante C, et al. Improving siRNA bio-distribution and minimizing side effects. Curr Drug Metab. 2011;12:11–23.PubMedCrossRefGoogle Scholar
  133. 133.
    Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32:936–48.PubMedCrossRefGoogle Scholar
  134. 134.
    Hiller M, Zhang Z, Backofen R, Stamm S. Pre-mRNA secondary structures influence exon recognition. PLoS Genet. 2007;3:e204.PubMedCrossRefGoogle Scholar
  135. 135.
    Boudreau RL, Martins I, Davidson BL. Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther. 2009;17:169–75.PubMedCrossRefGoogle Scholar
  136. 136.
    Boden D, Pusch O, Silbermann R, Lee F, Tucker L, Ramratnam B. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res. 2004;32:1154–8.PubMedCrossRefGoogle Scholar
  137. 137.
    Li L, Lin X, Khvorova A, Fesik SW, Shen Y. Defining the optimal parameters for hairpin-based knockdown constructs. RNA. 2007;13:1765–74.PubMedCrossRefGoogle Scholar
  138. 138.
    Han Y, Khodr CE, Sapru MK, Pedapati J, Bohn MC. A microRNA embedded AAV alpha-synuclein gene silencing vector for dopaminergic neurons. Brain Res. 2011;1386:15–24.PubMedCrossRefGoogle Scholar
  139. 139.
    Yang N, Mahato RI. GFAP promoter-driven RNA interference on TGF-beta1 to treat liver fibrosis. Pharm Res. 2011;28:752–61.PubMedCrossRefGoogle Scholar
  140. 140.
    Li F, Mahato RI. Bipartite vectors for co-expression of a growth factor cDNA and short hairpin RNA against an apoptotic gene. J Gene Med. 2009;11:764–71.PubMedCrossRefGoogle Scholar
  141. 141.
    De Paula D, Bentley MV, Mahato RI. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. Rna. 2007;13:431–56.PubMedCrossRefGoogle Scholar
  142. 142.
    Dertinger D, Dale T, Uhlenbeck OC. Modifying the specificity of an RNA backbone contact. J Mol Biol. 2001;314:649–54.PubMedCrossRefGoogle Scholar
  143. 143.
    Narang AS, Thoma L, Miller DD, Mahato RI. Cationic lipids with increased DNA binding affinity for nonviral gene transfer in dividing and nondividing cells. Bioconjug Chem. 2005;16:156–68.PubMedCrossRefGoogle Scholar
  144. 144.
    Li SD, Chono S, Huang L. Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles. J Control Release. 2008;126:77–84.PubMedCrossRefGoogle Scholar
  145. 145.
    Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 2008;319:627–30.PubMedCrossRefGoogle Scholar
  146. 146.
    Breunig M, Lungwitz U, Liebl R, Goepferich A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci U S A. 2007;104:14454–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Lee Y, Mo H, Koo H, Park JY, Cho MY, Jin GW, et al. Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery. Bioconjug Chem. 2007;18:13–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Hoon Jeong J, Christensen LV, Yockman JW, Zhong Z, Engbersen JF, Jong Kim W, et al. Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials. 2007;28:1912–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Breunig M, Hozsa C, Lungwitz U, Watanabe K, Umeda I, Kato H, et al. Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release. 2008;130:57–63.PubMedCrossRefGoogle Scholar
  150. 150.
    Wang XL, Jensen R, Lu ZR. A novel environment-sensitive biodegradable polydisulfide with protonatable pendants for nucleic acid delivery. J Control Release. 2007;120:250–8.PubMedCrossRefGoogle Scholar
  151. 151.
    Ou M, Wang XL, Xu R, Chang CW, Bull DA, Kim SW. Novel biodegradable poly(disulfide amine)s for gene delivery with high efficiency and low cytotoxicity. Bioconjug Chem. 2008;19:626–33.PubMedCrossRefGoogle Scholar
  152. 152.
    Stevenson M, Ramos-Perez V, Singh S, Soliman M, Preece JA, Briggs SS, et al. Delivery of siRNA mediated by histidine-containing reducible polycations. J Control Release. 2008;130:46–56.PubMedCrossRefGoogle Scholar
  153. 153.
    Endoh T, Ohtsuki T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev. 2009;61:704–9.PubMedCrossRefGoogle Scholar
  154. 154.
    Arthanari Y, Pluen A, Rajendran R, Aojula H, Demonacos C. Delivery of therapeutic shRNA and siRNA by Tat fusion peptide targeting BCR-ABL fusion gene in chronic myeloid leukemia cells. J Control Release. 2010;145:272–80.PubMedCrossRefGoogle Scholar
  155. 155.
    Andaloussi SE, Lehto T, Mager I, Rosenthal-Aizman K, Oprea II, Simonson OE, et al. Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res. 2011;39:3972–87.PubMedCrossRefGoogle Scholar
  156. 156.
    Oliveira S, van Rooy I, Kranenburg O, Storm G, Schiffelers RM. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int J Pharm. 2007;331:211–4.PubMedCrossRefGoogle Scholar
  157. 157.
    Sakurai Y, Hatakeyama H, Akita H, Oishi M, Nagasaki Y, Futaki S, et al. Efficient short interference RNA delivery to tumor cells using a combination of octaarginine, GALA and tumor-specific, cleavable polyethylene glycol system. Biol Pharm Bull. 2009;32:928–32.PubMedCrossRefGoogle Scholar
  158. 158.
    Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S, et al. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release. 2009;139:127–32.PubMedCrossRefGoogle Scholar
  159. 159.
    Shim MS, Kwon YJ. Dual mode polyspermine with tunable degradability for plasmid DNA and siRNA delivery. Biomaterials. 2011;32:4009–20.PubMedCrossRefGoogle Scholar
  160. 160.
    Gunther M, Lipka J, Malek A, Gutsch D, Kreyling W, Aigner A. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Eur J Pharm Biopharm. 2011;77:438–49.PubMedCrossRefGoogle Scholar
  161. 161.
    Kim J, Kim SW, Kim WJ. PEI-g-PEG-RGD/small interference RNA polyplex-mediated silencing of vascular endothelial growth factor receptor and its potential as an anti-angiogenic tumor therapeutic strategy. Oligonucleotides. 2011;21:101–7.PubMedCrossRefGoogle Scholar
  162. 162.
    Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res. 2010;16:3910–22.PubMedCrossRefGoogle Scholar
  163. 163.
    Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464:1067–70.PubMedCrossRefGoogle Scholar
  164. 164.
    Zhu L, Lu Y, Miller DD, Mahato RI. Structural and formulation factors influencing pyridinium lipid-based gene transfer. Bioconjug Chem. 2008;19:2499–512.PubMedCrossRefGoogle Scholar
  165. 165.
    Zhu L, Mahato RI. Targeted delivery of siRNA to hepatocytes and hepatic stellate cells by bioconjugation. Bioconjug Chem. 2010;21:2119–27.PubMedCrossRefGoogle Scholar
  166. 166.
    Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13:613–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Zhou J, Li H, Zhang J, Piotr S, Rossi J. Development of cell-type specific anti-HIV gp120 aptamers for siRNA delivery. J Vis Exp. 2011.Google Scholar
  169. 169.
    Gao J, Kou G, Wang H, Chen H, Li B, Lu Y, et al. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity. Breast Cancer Res Treat. 2009;115:29–41.PubMedCrossRefGoogle Scholar
  170. 170.
    Rothdiener M, Muller D, Castro PG, Scholz A, Schwemmlein M, Fey G, et al. Targeted delivery of SiRNA to CD33-positive tumor cells with liposomal carrier systems. J Control Release. 2010;144:251–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Ma Y, Kowolik CM, Swiderski PM, Kortylewski M, Yu H, Horne DA, et al. Humanized Lewis-Y specific antibody based delivery of STAT3 siRNA. ACS Chem Biol. 2011.Google Scholar
  172. 172.
    Pirollo KF, Zon G, Rait A, Zhou Q, Yu W, Hogrefe R, et al. Tumor-targeting nanoimmunoliposome complex for short interfering RNA delivery. Hum Gene Ther. 2006;17:117–24.PubMedCrossRefGoogle Scholar
  173. 173.
    Puig-Kroger A, Sierra-Filardi E, Dominguez-Soto A, Samaniego R, Corcuera MT, Gomez-Aguado F, et al. Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res. 2009;69:9395–403.PubMedCrossRefGoogle Scholar
  174. 174.
    Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008;41:120–9.PubMedCrossRefGoogle Scholar
  175. 175.
    Choi SK, Thomas T, Li MH, Kotlyar A, Desai A, Baker Jr JR. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem Commun (Camb). 2010;46:2632–4.CrossRefGoogle Scholar
  176. 176.
    Wang X, Li J, Wang Y, Koenig L, Gjyrezi A, Giannakakou P, et al. A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano. 2011.Google Scholar
  177. 177.
    Feng Y, Shen J, Streaker ED, Lockwood M, Zhu Z, Low PS, et al. A folate receptor beta-specific human monoclonal antibody recognizes activated macrophage of rheumatoid patients and mediates antibody-dependent cell-mediated cytotoxicity. Arthritis Res Ther. 2011;13:R59.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Saurabh Singh
    • 1
  • Ajit S. Narang
    • 2
  • Ram I. Mahato
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of Tennessee Health Science CenterMemphisUSA
  2. 2.Bristol-Myers Squibb, Co., Biopharmaceutics R&DNew BrunswickUSA

Personalised recommendations