Pharmaceutical Research

, Volume 29, Issue 3, pp 818–826 | Cite as

Poloxamer Thermogel Systems as Medium for Crystallization

  • Marco Cespi
  • Giulia Bonacucina
  • Luca Casettari
  • Giovanna Mencarelli
  • Giovanni Filippo PalmieriEmail author
Research Paper



To prepare a thermoreversible gel system able to work as a medium for crystallization at around 20°C, allowing easy retrieval of crystals by simply decreasing the gel temperature. Lactose was selected has model substance for crystallization.


Water solutions with different% of poloxamer 407, α-Lactose monohydrate, and ethanol were prepared and analysed by rheology to understand how the different components alter the gelling temperature. The systems with the required characteristics for lactose crystallization were prepared and the crystals recovered by cooling and then filtering the dispersion.


Rheological analysis showed interaction between the poloxamer and lactose. Increasing the quantity of poloxamer or lactose lowered the gelation temperature while the addition of small amounts of ethanol had a modest effect on the same property. These data were used to identify the ideal concentration of the components in order to prepare a system matching the features of our purpose. Such system yielded high quality crystals, with well-defined geometry and narrow particle size distribution.


Poloxamer is a very interesting polymer in that it is able to generate a reversible gelling medium from which crystals can be harvested by filtering, without the addition of any chemicals to promote the sol–gel transition.


crystallization lactose poloxamer rheology thermogel 



Carr index


median diameter


differential scanning calorimetry


elastic modulus


viscous modulus


interquartile range


lactose stock solutions


polyethylene oxide


polypropylene oxide


poloxamer stock solutions


phase angle


complex viscosity


bulk density


tapped density


  1. 1.
    Shekunov BY, York P. Crystallization processes in pharmaceutical technology and drug delivery design. J Crystal Growth. 2000;211:122–36.CrossRefGoogle Scholar
  2. 2.
    Liesegang RE. Phot Archiv. 1896;21:221.Google Scholar
  3. 3.
    Arora SK. Advances in gel growth: a review. Prog Crystal Growth Charact. 1981;4:345–78.CrossRefGoogle Scholar
  4. 4.
    Robert MC, Lefaucheux F. Crystal growth in gels: principle and applications. J Crystal Growth. 1988;90:358–67.CrossRefGoogle Scholar
  5. 5.
    Zeng XM, Martin GP, Marriott C, Pritchard J. Crystallization of lactose from carbopol gels. Pharm Res. 2000;17:879–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Zeng XM, Martin GP, Marriott C, Pritchard J. The use of lactose recrystallised from carbopol gels as a carrier for aerolised salbutamol sulphate. Eur J Pharm Biopharm. 2001;51:55–62.CrossRefGoogle Scholar
  7. 7.
    Alexandridis P, Hatton TA. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A Physicochem Eng Aspects. 1995;96:1–46.CrossRefGoogle Scholar
  8. 8.
    Alexandridis P, Holzwarth JF, Hatton TA. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules. 1994;27:2414–25.CrossRefGoogle Scholar
  9. 9.
    Linse P. Micellization of poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solution. Macromolecules. 1993;26:4437–49.CrossRefGoogle Scholar
  10. 10.
    Mortensen K, Pedersen JS. Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. Macromolecules. 1993;26:805–12.CrossRefGoogle Scholar
  11. 11.
    Ruel-Gariépy E, Leroux JC. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58:409–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Bonacucina G, Cespi M, Mencarelli G, Giorgioni G, Palmieri GF. Thermosensitive self-assembling block copolymers as drug delivery systems. Polymers. 2011;3:779–811.CrossRefGoogle Scholar
  13. 13.
    Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23:2709–28.PubMedCrossRefGoogle Scholar
  14. 14.
    BASF Aktiengesellschaft. Poloxamer 407-Thickening agent and gel former for the pharmaceutical industry, 2005, pp. 1–8.Google Scholar
  15. 15.
    Beddow J, Meloy T. Testing and characterization of powders and fine particles. London: Heyden & Son Ltd; 1980.Google Scholar
  16. 16.
    Carr RL. Evaluating flow properties of solids. Chem Eng. 1965;72:163–8.Google Scholar
  17. 17.
    Bonacucina G, Spina M, Misici-Falzi M, Cespi M, Pucciarelli S, Angeletti M, et al. Effect of hydroxypropyl beta-cyclodextrin on the self-assembling and thermogelation properties of Poloxamer 407. Eur J Pharm Sci. 2007;32:115–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Bohorquez M, Koch C, Trygstad T, Pandit N. A study of the temperature-dependent micellization of pluronic F127. J Colloid Interface Sci. 1999;216:34–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Microcal. OriginPro 8 SR1 manual software, 2007.Google Scholar
  20. 20.
    Cespi M, Bonacucina G, Mencarelli G, Pucciarelli S, Giorgioni G, Palmieri GF. Monitoring the aggregation behaviour of self-assembling polymers through high-resolution ultrasonic spectroscopy. Int J Pharm. 2010;388:274–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Desai PR, Jain NJ, Sharma RK, Bahadur P. Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution. Colloids Surf A. 2001;178:57–69.CrossRefGoogle Scholar
  22. 22.
    Rodriguez-Hornedo N, Murphy D. Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems. J Pharm Sci. 1999;88:651–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Wade A, Weller PJ. Handbook of pharmaceutical excipients. Washington DC: American Pharmaceutical Association; 1994.Google Scholar
  24. 24.
    Machado JJB, Coutinho JA, Macedo EA. Solid–liquid equilibrium of α-lactose in ethanol/water. Fluid Phase Equilibria. 2000;173:121–34.CrossRefGoogle Scholar
  25. 25.
    Ford LJ, Timmins P. Pharmaceutical thermal analysis, techniques and application. Chichester: Ellis Horwood Limited; 1989.Google Scholar
  26. 26.
    Garnier S, Petit S, Mallet F, Petit MN, Lemarchand D, Coste S, et al. Influence of ageing, grinding and preheating on the thermal behaviour of alpha-lactose monohydrate. Int J Pharm. 2008;361:131–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Walstra P, Jenness R, Badings HT. Dairy chemistry and physics. New York: Wilkey; 1984.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marco Cespi
    • 1
  • Giulia Bonacucina
    • 1
  • Luca Casettari
    • 2
  • Giovanna Mencarelli
    • 1
  • Giovanni Filippo Palmieri
    • 1
    Email author
  1. 1.University of CamerinoCamerinoItaly
  2. 2.University of UrbinoUrbinoItaly

Personalised recommendations