Pharmaceutical Research

, 28:2758

Mitochondria and Trypanosomatids: Targets and Drugs

Expert Review

ABSTRACT

The family Trypanosomatidae, flagellated parasitic protozoa, is responsible for important infectious diseases in humans: sleeping sickness, Chagas diseases and leishmaniasis. Currently, development of effective vaccines against these parasites remains an unrealized goal, and clinical management is based on chemotherapeutics. Cost, toxicity and resistance problems of conventional drugs result in an urgent need to identify and develop new therapeutic alternatives. The sound understanding of parasites, biology is key for identifying novel lead structures and new drug targets. This article reviews current knowledge about mitochondrial drug targets and existing drugs against Trypanosoma and Leishmania. In the past, several targets in trypanosomatid mitochondria (electron transport chain, kDNA and topoisomerases, tRNA import and fatty acid synthesis) have been identified. It has been suggested that inhibition of certain targets is involved in triggering apoptosis by impairment of mitochondrial membrane potential and/or production of reactive oxygen species. The inhibitory mechanism of approved drugs, such as pentamidine, nifurtimox, artemisinin and atovaquone, is described in parallel with others products from preclinical studies. In spite of the large amount of genetic information, the analysis of the phenotype of the trypanosomatid mitochondrion in different life stages will remain a useful tool to design new active compounds with selective toxicity against these parasites.

KEY WORDS

drug Leishmania mitochondria target Trypanosoma 

ABBREVIATIONS

DIM

3,3′diindolylmethane

ETC

electron transport chain

FAS

fatty acid synthesis

FRD

fumarate reductase

gRNAs

short transcripts RNA

HAT

Human African Trypanosomiasis

kDNA

kinetoplastid DNA

MMP

mitochondrial membrane potential

NADH

nicotinamide adenine dinucleotide

NTDs

neglected tropical diseases

PCD

programmed cell death

RIC

rNA import complex

ROS

reactive oxygen species

TAO

Trypanosoma alternative oxidase

tRNA

transcription DNA

REFERENCES

  1. 1.
    Caffrey CR, Steverding D. Recent initiatives and strategies to developing new drugs for tropical parasitic diseases. Expert Opin Drug Discov. 2008;3:173–86.CrossRefGoogle Scholar
  2. 2.
    Souza W. An introduction to the structural organization of parasitic protozoa. Curr Pharm Design. 2008;14:822–38.CrossRefGoogle Scholar
  3. 3.
    Scheffler IE. Mitochondria make a comeback. Adv Drug Deliv Rev. 2001;49:3–26.PubMedCrossRefGoogle Scholar
  4. 4.
    Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria as targets for cancer chemotherapy. Semin Cancer Biol. 2009;19:57–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Schneider A. Unique aspects of mitochondrial biogenesis in trypanosomatids. Int J Parasitol. 2001;31:1403–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Souza W, Attias M, Rodríguez JCF. Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol. 2009;41:2069–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Mather MW, Henry KW, Vaidya AB. Mitochondrial drug targets in apicomplexan parasites. Curr Drug Targets. 2007;8:49–60.PubMedCrossRefGoogle Scholar
  8. 8.
    Monzote L, Gille L. Mitochondria as a promising antiparasitic target. Curr Clin Pharmacol. 2010;5:55–66.PubMedCrossRefGoogle Scholar
  9. 9.
    Sen N, Majumder K. Mitochondrion of protozoa parasite emerges as potent therapeutic target: exciting drugs are on the horizon. Curr Pharm Design. 2008;14:839–46.CrossRefGoogle Scholar
  10. 10.
    Mehta A, Shaha C. Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem. 2004;279:11798–813.PubMedCrossRefGoogle Scholar
  11. 11.
    Brun R, Krassner SM. Quantitative ultrastructural investigations of mitochondrial development in Leishmania donovani during transformation. J Protozool. 1976;23:493–7.PubMedGoogle Scholar
  12. 12.
    Attardi G, Schatz G. The biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333.PubMedCrossRefGoogle Scholar
  13. 13.
    Riou G, Paoletti C. Preparation and properties of nuclear and satellite deoxyribonucleic acid of Trypanosoma cruzi. J Mol Biol. 1967;28:377–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Shapiro TA, Showalter AF. In vivo inhibition of trypanosome mitochondrial topoisomerase II: effects on kinetoplast DNA maxicircles. Mol Cell Biol. 1994;14:5891–7.PubMedGoogle Scholar
  15. 15.
    Werbovetz KA. Promising therapeutic targets for antileishmanial drugs. Expert Opin Ther Targets. 2002;6:407–22.PubMedCrossRefGoogle Scholar
  16. 16.
    Barrett MP, Burchmore MP, Stich A. The trypanosomiasis. Lancet. 2003;362:1469–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Buckner FS, Griffin JH, Wilson AJ, Van Voorhis WC. Potent anti-Trypanosoma cruzi activities of oxidosqualene cyclase inhibitors. Antimicrob Agents Chemother. 2001;45:1210–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Worthen C, Jensen BC, Parson M. Diverse effects on mitochondrial and nuclear functions elicited by drugs and genetic knockdowns in bloodstream stage Trypanosoma brucei. PLoS Neglect Trop Dis. 2010;4:e678.CrossRefGoogle Scholar
  19. 19.
    Chen M, Bennedsen M, Zhai L, Kharazmi A. Purification and enzymatic activity of an NADH-fumarate reductase and other mitochondrial activities of Leishmania parasites. APMIS. 2001;109:801–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Sen N, Banerjee B, Gupta SS, Das BB, Ganguly A, Majumder HK. Leishmania donovani: dyskinetoplastid cells survive and proliferate in the presence of pyruvate and uridine but do not undergo apoptosis after treatment with camptothecin. Exp Parasitol. 2007;115:215–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Chakraborty B, Biswas S, Mondal S, Bera T. Stage specific developmental changes in the mitochondrial and surface membrane associated redox systems of Leishmania donovani promastigote and amastigote. Biochem (Moscow). 2010;75:494–504.CrossRefGoogle Scholar
  22. 22.
    McConville MJ, de Souza D, Saunders E, Likic VA, Naderer T. Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol. 2007;23:368–75.PubMedCrossRefGoogle Scholar
  23. 23.
    Naderer T, McConville MJ. The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiol. 2008;10:301–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Dey R, Meneses C, Salotra P, et al. Characterization of a Leishmania stage-specific mitochondrial membrane protein enhances the activity of cytochrome c oxidase and its role in virulence. Mol Microbiol. 2010;77:399–414.PubMedCrossRefGoogle Scholar
  25. 25.
    Abrahamsen MS, Templeton TJ, Enomoto S, et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science. 2004;304:441–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Vaidya AB. Mitochondrial and plastid functions as antimalarial drug targets. Curr Drug Targets Infect Disord. 2004;4:11–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Santhamma KR, Bhaduri A. Characterization of the respiratory chain of Leishmania donovani promastigotes. Mol Biochem Parasitol. 1995;75:43–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Turrens JF. Possible role of the NADH-fumarate reductase in superoxide anion and hydrogen peroxide production in Trypanosoma brucei. Mol Biochem Parasitol. 1987;25:55–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Srivastava IK, Rottenberg H, Vaidya AB. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem. 1997;272:3961–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Speijer D, Breek CK, Muijsers AO, et al. The sequence of a small subunit of cytochrome c oxidase from Crithidia fasciculate which is homologous to mammalian subunit IV. FEBS Lett. 1996;381:123–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Horvath A, Berry EA, Huang LS, Maslov DA. Leishmania tarentolae: a parallel isolation of cytochrome bc(1) and cytochrome c oxidase. Exp Parsitol. 2000;96:160–7.CrossRefGoogle Scholar
  32. 32.
    Zikova A, Panigrahi AK, Uboldi AD, Dalley RA, Handman E, Stuart K. Structural and functional association of Trypanosoma brucei MIX protein with cytochrome c oxidase complex. Eukaryot Cell. 2008;7:1994–2003.PubMedCrossRefGoogle Scholar
  33. 33.
    Chaudhuri M, Ott RD, Hill GC. Trypanosome alternative oxidase: from molecule to function. Trends Parasitol. 2006;22:484–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Clarkson AB, Bienen EJ, Pollakis G, Grady RW. Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J Biol Chem. 1989;264:17770–6.PubMedGoogle Scholar
  35. 35.
    Das BB, Sengupta T, Ganguly A, Majumder HK. Topoisomerases of kinetoplastid parasites: why so fascinating? Mol Microbiol. 2006;62:917–27.PubMedCrossRefGoogle Scholar
  36. 36.
    Reguera RM, Redondo CM, Gutierrez de Prado R, Pérez-Pertejo Y, Balaña-Fouce R. DNA topoisomerase I from parasitic protozoa: a potential target for chemotherapy. Biochim Biophys Acta. 2006;1759:117–31.PubMedGoogle Scholar
  37. 37.
    Motta MCM. Kinetoplast as a potential chemotherapeutic target of trypanosomatids. Curr Pharm Des. 2008;14:847–54.PubMedCrossRefGoogle Scholar
  38. 38.
    Bodley AL, McGarry MW, Shapiro TA. Drug cytotoxicity assay for African Trypanosomes and Leishmania Species. J Infect Dis. 1995;172:1157–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Schneider A, Marechal-Drouard L. Mitochondrial tRNA import: are there distinct mechanism? Trends Cell Biol. 2000;10:509–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Hancock K, Hajduk SL. The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J Biol Chem. 1990;265:19208–15.PubMedGoogle Scholar
  41. 41.
    Battacharyya SN, Adhya S. The complexity of mitochondrial tRNA import. RNA Biol. 2004;1:84–8.CrossRefGoogle Scholar
  42. 42.
    Adhya S. Leishmania mitochondrial tRNA importers. Int J Biochem Cell Biol. 2008;40:2681–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee SH, Stephens JL, Paul KS, Englund PT. Fatty acid synthesis by elongases in trypanosomes. Cell. 2006;126:691–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Morita YS, Paul KS, Englund PT. Specialized fatty acid synthesis in African trypanosomes: myristate for GPI anchors. Science. 2000;288:140–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Stephens JL, Lee SH, Paul KS, Englund PT. Mitochondrial fatty acid synthesis in Trypanosoma brucei. J Biol Chem. 2007;282:4427–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Guler JL, Kriegova E, Smith TK, Lukes J, Englund PT. Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei. Mol Microbiol. 2008;67:1125–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ. Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol. 2003;126:129–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Gottlieb RA. Mitochondrial signaling in apoptosis: mitochondrial daggers to the breaking heart. Basic Res Cardiol. 2003;98:242–9.PubMedGoogle Scholar
  49. 49.
    Gille L, Nohl H. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Arch Biochem Biophys. 2001;388:34–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S. Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett. 2002;511:21–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med. 2007;43:995–1022.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278:36027–31.PubMedCrossRefGoogle Scholar
  53. 53.
    Arnould D, Akarid K, Grodet A, Petit PX, Estaquier J, Ameisen JC. On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ. 2002;9:65–81.CrossRefGoogle Scholar
  54. 54.
    Luque-Ortega JR, Martinez S, Saugar JM, et al. Fungus-elicited metabolites from plants as an enriched source for new leishmanicidal agents: antifungal phenyl-phenalenone phytoalexins from the banana plant (Musa acuminata) target mitochondria of Leishmania donovani promastigotes. Antimicrob Agents Chemother. 2004;48:1534–40.PubMedCrossRefGoogle Scholar
  55. 55.
    Roy A, Ganguly A, BoseDasgupta S, et al. Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3′diindolylmethane through inhibition of F1F0-ATP synthase in unicellular protozoa parasite Leishmania donovani. Mol Pharmacol. 2008;74:1292–307.PubMedCrossRefGoogle Scholar
  56. 56.
    Cavalli A, Bolognesi ML. Neglected tropical diseases: Multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. Med Chem Perpectives. 2009;52:7339–59.CrossRefGoogle Scholar
  57. 57.
    Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol. 2003;19:495–501.PubMedCrossRefGoogle Scholar
  58. 58.
    Paulino M, Iribarne F, Dubin M, Aguilera-Morales S, Tapia O, Stoppani AO. The chemotherapy of Chagas’ disease: an overview. Mini-Rev Med Chem. 2005;5:499–519.PubMedCrossRefGoogle Scholar
  59. 59.
    Boiani M, Piacenza L, Hernández P, Boiani L, Cerecetto H, González M, et al. Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved? Biochem Pharmacol. 2010;79:1736–45.PubMedCrossRefGoogle Scholar
  60. 60.
    Jones SM, Urch JE, Brun R, Harwood JL, Berry C, Gilbert IH. Analogues of thiolactomycin as potential anti-malarial and anti-trypanosomal agents. Bioorg Med Chem. 2004;12:683–92.PubMedCrossRefGoogle Scholar
  61. 61.
    Shapiro TA, Klein VA, Englund PT. Drug-promoted cleavage of kinetoplast DNA minicircles. Evidence for type II topoisomerase activity in trypanosome mitochondria. J Biol Chem. 1989;264:4173–8.PubMedGoogle Scholar
  62. 62.
    Santa-Rita RM, Lira R, Barbosa HS, Urbina JA, de Castro SL. Anti-proliferative synergy of lysophospholipid analogues and ketoconazole against Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae): cellular and ultrastructural analysis. J Antimicrob Chemother. 2005;55:780–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Batista Dda G, Batista MM, de Oliveira GM, et al. Arylimidamide DB766, a potential chemotherapeutic candidate for Chagas’ disease treatment. Antimicrob Agents Chemother. 2010;54:2940–52.PubMedCrossRefGoogle Scholar
  64. 64.
    Bernacchi AS, Franke DC, Castro JA. Trypanocidal action of 2,4-dichloro-6-phenylphenoxyethyl diethylamine hydrobromide (Lilly 18947) on Trypanosoma cruzi. Acta Pharmacol Sin. 2002;23:399–404.PubMedGoogle Scholar
  65. 65.
    Menna-Barreto RF, Henriques-Pons A, Pinto AV, et al. Effect of a beta-lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles. J Antimicrob Chemother. 2005;56:1034–41.PubMedCrossRefGoogle Scholar
  66. 66.
    De Carvalho EA, Andrade PP, Silva NH, Pereira EC, Figueiredo RC. Effect of usnic acid from the lichen Cladonia substellata on Trypanosoma cruzi in vitro: an ultrastructural study. Micron. 2005;36:155–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Deolindo P, Teixeira-Ferreira AS, Melo EJ, et al. Programmed cell death in Trypanosoma cruzi induced by Bothrops jararaca venom. Mem Inst Oswaldo Cruz. 2005;100:33–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Adade CM, Cons BL, Melo PA, Souto-Padrón T. Effect of Crotalus viridis viridis snake venom on the ultrastructure and intracellular survival of Trypanosoma cruzi. Parasitology. 2011;138:46–58.PubMedCrossRefGoogle Scholar
  69. 69.
    Veiga-Santos P, Pelizzaro-Rocha KJ, Santos AO, et al. In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurencia dendroidea. Parasitology. 2010;137:1661–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Fairlamb AH. Chemotherapy of human African trypanosomiasis: current and future prospect. Trends Parasitol. 2003;19:488–94.PubMedCrossRefGoogle Scholar
  71. 71.
    Delexpaux V, de Koning HP. Drugs and drug resistance in African trypanosomiasis. Drug Resist Update. 2007;10:30–50.CrossRefGoogle Scholar
  72. 72.
    Sands M, Kron MA, Brown RB. Pentamidine: a review. Rev Infect Dis. 1985;7:625–34.PubMedCrossRefGoogle Scholar
  73. 73.
    Berger B, Carter NS, Fairlamb AH. Characterization of pentamidine-resistant Trypanosma brucei brucei. Mol Biochem Parasitol. 1995;69:289–98.PubMedCrossRefGoogle Scholar
  74. 74.
    Basselin M, Badet-Denisot MA, Lawrence F, Robert-Gero M. Effects of pentamidine on polyamine levels and biosynthesis in wild type, pentamidine-treated and pentamidine resistant Leishmania. Exp Parasitol. 1997;85:274–82.PubMedCrossRefGoogle Scholar
  75. 75.
    Mukherjee A, Padmanabhan PK, Sahani MH, Barrett MP, Madhubala R. Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Mol Biochem Parasitol. 2006;145:1–10.PubMedCrossRefGoogle Scholar
  76. 76.
    Lanteri CA, Tidwell RR, Meshnick SR. The mitochondrion is a site of trypanocidal action of the aromatic diamidine DB75 in bloodstream forms of Trypanosoma brucei. Antimicrob Agents Chemother. 2008;52:875–82.PubMedCrossRefGoogle Scholar
  77. 77.
    Yabu Y, Yoshida A, Suzuki T, et al. The efficacy of ascofuranone in a consecutive treatment on Trypanosoma brucei brucei in mice. Parasitol Int. 2003;52:155–64.PubMedCrossRefGoogle Scholar
  78. 78.
    Yabu Y, Suzuki T, Nihei C, et al. Chemotherapeutic efficacy of ascofuranone in Trypanosoma vivax-infected mice without glycerol. Parasitol Int. 2006;55:39–43.PubMedCrossRefGoogle Scholar
  79. 79.
    Vodnala SK, Ferella M, Lundén-Miguel H, et al. Preclinical assessment of the treatment of second-stage African trypanosomiasis with cordycepin and deoxycoformycin. PLoS Negl Trop Dis. 2009;3:e495.PubMedCrossRefGoogle Scholar
  80. 80.
    Mamani-Matsuda M, Rambert J, Malvy D, et al. Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob Agents Chemother. 2004;48:924–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Mittra B, Saha A, Chowdhury AR, et al. Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol Med. 2000;6:527–41.PubMedCrossRefGoogle Scholar
  82. 82.
    Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ. 2002;9:53–64.PubMedCrossRefGoogle Scholar
  83. 83.
    Luque-Ortega JR, Reuther P, Rivas L, Dardonville C. New benzophenone-derived bisphosphonium salts as leishmanicidal leads targeting mitochondria through inhibition of respiratory complex II. J Med Chem. 2010;53:1788–98.PubMedCrossRefGoogle Scholar
  84. 84.
    Sen R, Bandyopadhyay S, Dutta A, et al. Artemisinin triggers induction of cell-arrest and apoptosis in Leishmania donovani promastigotes. J Med Microbiol. 2007;56:1213–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Mishina YV, Krishna S, Haynes RK, Meade JC. Artemisinins inhibited Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth. Antimicrobial Agents Chemother. 2007;51:1852–4.CrossRefGoogle Scholar
  86. 86.
    Cauchetier E, Loiseau PM, Lehman J, et al. Characterization of atovaquone resistance in Leishmania infantum promastigotes. Int J Parasitol. 2002;32:1043–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Srivastava IK, Morrisey JM, Darrouzet E, Daldal F, Vaidya AB. Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol Microbiol. 1999;33:704–11.PubMedCrossRefGoogle Scholar
  88. 88.
    Hughes LM, Lanteri CA, O’Neil MT, Johnson JD, Gribble GW, Trumpower BL. Design of anti-parasitic and anti-fungal hydroxy-naphthoquinones that are less susceptible to drug resistance. Mol Biochem Parasitol. 2011;177:12–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Chen M, Zhai L, Christensen SB, Theander TG, Kharazmi A. Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob Agents Chemother. 2001;45:2023–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Kayser O, Chen M, Kharazmi A, Kiderlen AF. Aurones interfere with Leishmania major mitochondrial fumarate reductase. Z Naturforsch C. 2002;57:717–20.PubMedGoogle Scholar
  91. 91.
    Carvalho L, Luque-Ortega JR, Manzano JI, Castanys S, Rivas L, Gamarro F. Tafenoquine, an antiplasmodial 8-aminoquinoline, targets Leishmania respiratory complex III and induces apoptosis. Antimicrob Agents Chemother. 2010;54:5344–51.PubMedCrossRefGoogle Scholar
  92. 92.
    Dutta A, Ghoshal A, Mandal D, et al. Racemoside A, an anti-leishmanial, water soluble, natural steroidal saponin, induces programmed cell death in Leishmania donovani. J Med Microbiol. 2007;56:1196–204.PubMedCrossRefGoogle Scholar
  93. 93.
    Sen N, Banerjee B, Das BB, et al. Aposptosis is induced in leishmania cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex. Cell Death Differ. 2007;14:358–67.PubMedCrossRefGoogle Scholar
  94. 94.
    Misra P, Kumar A, Khare P, Gupta S, Kumar N, Dube A. Pro-apoptotic effect of the landrace Bangla Mahoba of Piper betle on Leishmania donovani may be due to the high content of eugenol. J Med Microbiol. 2009;58:1058–66.PubMedCrossRefGoogle Scholar
  95. 95.
    Saha P, Sen R, Hariharan C, Kumar D, Das P, Chatterjee M. Berberine chloride causes a caspase-independent, apoptotic-like death in Leishmania donovani promastigotes. Free Radic Res. 2009;43:1101–10.PubMedCrossRefGoogle Scholar
  96. 96.
    Reimó JQ, Taniwaki NN, Tempone AG. Furazolidone is a selective in vitro candidate against Leishmania (L.) chagasi: an ultrastructural study. Parasitol Res. 2010;106:1465–9.CrossRefGoogle Scholar
  97. 97.
    Tempone AG, da Silva AC, Brandt CA, et al. Synthesis and antileishmanial activities of novel 3-substituted quinolines. Antimicrob Agents Chemother. 2005;49:1076–80.PubMedCrossRefGoogle Scholar
  98. 98.
    Rodrigues JC, Bernardes CF, Visbal G, et al. Sterol methenyl transferase inhibitors alter the ultrastructure and function of the Leishmania amazonensis mitochondrion leading to potent growth inhibition. Protist. 2007;158:447–56.PubMedCrossRefGoogle Scholar
  99. 99.
    Magan R, Marin C, Rosales MJ, Salas JM, Sanchez-Moreno M. Therapeutic potential of new Pt(II) and Ru(III) triazole-pyrimidine complexes against Leishmania donovani. Pharmacol. 2005;3:41–8.Google Scholar
  100. 100.
    Sen N, Das BB, Ganguly A, Banerjee B, Sen T, Majumder HK. Leishmania donovani: intracellular ATP level regulates apoptosis-like death in luteolin induced dyskinetoplastid cells. Exp Parasitol. 2006;114:204–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departamento de ParasitologíaInstituto de Medicina Tropical “Pedro Kourí”Ciudad HabanaCuba
  2. 2.Institute of Pharmacology and Toxicology Department of Biomedical SciencesUniversity of Veterinary MedicineViennaAustria

Personalised recommendations