Pharmaceutical Research

, 28:2931 | Cite as

Gold Nanoparticle Penetration and Reduced Metabolism in Human Skin by Toluene

  • Hagar I. Labouta
  • David C. Liu
  • Lynlee L. Lin
  • Margaret K. Butler
  • Jeffrey E. Grice
  • Anthony P. Raphael
  • Tobias Kraus
  • Labiba K. El-Khordagui
  • H. Peter Soyer
  • Michael S. Roberts
  • Marc SchneiderEmail author
  • Tarl W. ProwEmail author
Research Paper



To measure penetration and metabolic effects of ion-stabilized, polar, 15 nm gold nanoparticles in aqueous solution (AuNP-Aq) and sterically stabilized, non-polar, 6 nm gold nanoparticles in toluene (AuNP-TOL) on excised human skin.


Gold nanoparticles were characterized with dynamic light scattering and transmission electron microscopy (TEM). Skin penetration studies were done on frozen or fresh excised skin using static Franz diffusion cells. Viable treated skin was assessed by dermoscopy, reflectance confocal microscopy (RCM), multiphoton tomography (MPT) with fluorescence lifetime imaging microscopy (FLIM), and TEM.


Dermoscopy and RCM showed large aggregates in the furrows of AuNP-Aq-treated skin. Treatment of thawed and viable skin only showed enhanced permeability to nanoparticles in the AuNP-TOL group with MPT and FLIM imaging to stratum spinosum of epidermis. TEM analysis revealed gold nanoparticles within AuNP-treated stratum corneum. FLIM analysis of NAD(P)H showed a significant decrease in total NAD(P)H in all toluene-treated groups.


Gold nanoparticles, 15 nm, in aqueous solution aggregated on the skin surface. Toluene treatment eliminated skin metabolism; skin treated with toluene/gold nanoparticles (6 nm) for 24 h, but not at 4 h, showed increased nanoparticle permeability. These results are of value to nanotoxicology.


confocal reflectance microscopy fluorescence lifetime multiphoton microscopy nanoparticle skin 



analysis of variance


gold nanoparticle


gold nanoparticle in aqueous solution


gold nanoparticle in toluene


band pass filter


energy-dispersed X-ray spectroscopy


fluorescence lifetime imaging microscopy


dichroic low pass filter


inductively coupled plasma


multiphoton tomography


multiphoton tomography with fluorescence lifetime imaging microscopy


numerical aperture


nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate


reflectance confocal microscopy


stratum basale


stratum corneum


stratum granulosum


stratum spinosum


transmission electron microscopy


trans-epidermal water loss


viable epidermis


  1. 1.
    Mooradia A. Photoluminescence of metals. Phys Rev Lett. 1969;22:185.CrossRefGoogle Scholar
  2. 2.
    Prow TW, Chen X, Prow NA, Fernando GJ, Tan CS, Raphael AP, et al. Nanopatch-targeted skin vaccination against West Nile Virus and Chikungunya virus in mice. Small. 2010;6:1776–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol. 2009;1:197–206.PubMedCrossRefGoogle Scholar
  4. 4.
  5. 5.
    Robertson TA, Sanchez WY, Roberts MS. Are commercially available nanoparticles safe when applied to the skin? J Biomed Nanotechnol. 2010;6:452–68.PubMedCrossRefGoogle Scholar
  6. 6.
    Monteiro-Riviere NA, Tran CL. Nanotoxicology: characterization, dosing and health effects. New York: Informa Healthcare; 2007.Google Scholar
  7. 7.
    Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011.Google Scholar
  8. 8.
    Küchler S, Abdel-Mottaleb M, Lamprecht A, Radowski MR, Haag R, Schäfer-Korting M. Influence of nanocarrier type and size on skin delivery of hydrophilic agents. Int J Pharm. 2009;377:169–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 2007;7:155–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Mortensen LJ, Oberdorster G, Pentland AP, Delouise LA. In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett. 2008;8:2779–87.PubMedCrossRefGoogle Scholar
  11. 11.
    Paliwal S, Menon GK, Mitragotri S. Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots. J Invest Dermatol. 2006;126:1095–101.PubMedCrossRefGoogle Scholar
  12. 12.
    Coulman SA, Anstey A, Gateley C, Morrissey A, McLoughlin P, Allender C, et al. Microneedle mediated delivery of nanoparticles into human skin. Int J Pharm. 2009;366:190–200.PubMedCrossRefGoogle Scholar
  13. 13.
    Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, et al. Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health. 2009;82:1043–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Contr Release. 2010;141:277–99.CrossRefGoogle Scholar
  15. 15.
    Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63:470–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Roberts MS, Dancik Y, Prow TW, Thorling CA, Lin LL, Grice JE, et al. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur J Pharm Biopharm. 2011;77:469–88.PubMedCrossRefGoogle Scholar
  17. 17.
    Xia XR, Monteiro-Riviere NA, Riviere JE. Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents. Toxicol Appl Pharmacol. 2010;242:29–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Harper M. Assessing workplace chemical exposures: the role of exposure monitoring. J Environ Monit. 2004;6:404–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Hoover MD, Stefaniak AB, Day GA, Geraci CL. Exposure assessment considerations for nanoparticles in the workplace. In: Monteiro-Riviereand NA, Tran CL, editors. Nanotoxicology: characterization, dosing and health effects. New York: Informa Healthcare; 2007. p. 71–83.Google Scholar
  20. 20.
    Riviereand JE, Brooks JD. Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeation relationships on biology of skin model used. Toxicol Sci. 2011;119:224–32.CrossRefGoogle Scholar
  21. 21.
    Riviereand JE, Brooks JD. Predicting skin permeability from complex chemical mixtures. Toxicol Appl Pharmacol. 2005;208:99–110.CrossRefGoogle Scholar
  22. 22.
    Xia XR, Monteiro-Riviere NA, Riviere JE. Intrinsic biological property of colloidal fullerene nanoparticles (nC60): lack of lethality after high dose exposure to human epidermal and bacterial cells. Toxicol Lett. 2010;197:128–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Farrer RA, Butterfield FL, Chen VW, Fourkas JT. Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. Nano Lett. 2005;5:1139–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Labouta HI, Kraus T, El-Khordagui LK, Schneider M. Combined multiphoton imaging-pixel analysis for semiquantitation of skin penetration of gold nanoparticles. Int J Pharmaceut. 2011;413:279–82.CrossRefGoogle Scholar
  25. 25.
    Boyd GT, Yu ZH, Shen YR. Photoinduced Luminescence from the Noble-Metals and Its Enhancement on Roughened Surfaces. Phys Rev B. 1986;33:7923–36.CrossRefGoogle Scholar
  26. 26.
    Yang Y, Qu Y, Lu X. Global gene expression analysis of the effects of gold nanoparticles on human dermal fibroblasts. J Biomed Nanotechnol. 2010;6:234–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale. 2011;3:410–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Lu S, Xia D, Huang G, Jing H, Wang Y, Gu H. Concentration effect of gold nanoparticles on proliferation of keratinocytes. Colloids Surf B Biointerfaces. 2010;81:406–11.PubMedCrossRefGoogle Scholar
  29. 29.
    Larese Filon F, Crosera M, Adami G, Bovenzi M, Rossi F, Maina G. Human skin penetration of gold nanoparticles through intact and damaged skin. Nanotoxicology. 2011. doi: 10.3109/17435390.2010.551428.
  30. 30.
    Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. discuss, Faraday Soc. 1951;55–57.Google Scholar
  31. 31.
    Zheng N, Fan J, Stucky GD. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J Am Chem Soc. 2006;128:6550–1.PubMedCrossRefGoogle Scholar
  32. 32.
    Wagner H, Kostka KH, Adelhardt W, Schaefer UF. Effects of various vehicles on the penetration of flufenamic acid into human skin. Eur J Pharm Biopharm. 2004;58:121–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Lin LL, Grice JE, Butler MK, Zvyagin AV, Becker W, Robertson TA, et al. Time-Correlated Single Photon Counting for Simultaneous Monitoring of Zinz Oxide Nanoparticles and NAD(P)H in Intact and Barrier Disrupted Volunteer Skin. Pharm Res. 2011. doi: 10.1007/s11095-011-0515-5.
  34. 34.
    Schneider G, Decher G. Functional core/shell nanoparticles via layer-by-layer assembly. Investigation of the experimental parameters for controlling particle aggregation and for enhancing dispersion stability. Langmuir. 2008;24:1778–89.PubMedCrossRefGoogle Scholar
  35. 35.
    Bird DK, Yan L, Vrotsos KM, Eliceiri KW, Vaughan EM, Keely PJ, et al. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res. 2005;65:8766–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Sanchez WY, Prow TW, Sanchez WH, Grice JE, Roberts MS. Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy. J Biomed Opt. 2010;15:046008.PubMedCrossRefGoogle Scholar
  37. 37.
    Godinand B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59:1152–61.CrossRefGoogle Scholar
  38. 38.
    Okyar A, Nuriyev M, Yildiz A, Pala-Kara Z, Ozturk N, Kaptan E. The effect of terpenes on percutaneous absorption of tiaprofenic acid gel. Arch Pharm Res. 2010;33:1781–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloid Surface B. 2008;65:1–10.CrossRefGoogle Scholar
  40. 40.
    Prow TW, Monteiro-Riviere NA, Inman AO, Grice JE, Chen X, Zhao X, et al. Quantum dot penetration into viable human skin. Nanotoxicology. 2011.Google Scholar
  41. 41.
    Parfenov AS, Salnikov V, Lederer WJ, Lukyanenko V. Aqueous diffusion pathways as a part of the ventricular cell ultrastructure. Biophys J. 2006;90:1107–19.PubMedCrossRefGoogle Scholar
  42. 42.
    Lacerda SH, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano. 2010;4:365–79.PubMedCrossRefGoogle Scholar
  43. 43.
    Westerand RC, Maibach HI. Percutaneous absorption of topical corticosteroids. Curr Probl Dermatol. 1993;21:45–60.Google Scholar
  44. 44.
    Wester RC, Melendres J, Sedik L, Maibach H, Riviere JE. Percutaneous absorption of salicylic acid, theophylline, 2, 4-dimethylamine, diethyl hexyl phthalic acid, and p-aminobenzoic acid in the isolated perfused porcine skin flap compared to man in vivo. Toxicol Appl Pharmacol. 1998;151:159–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hagar I. Labouta
    • 1
    • 2
  • David C. Liu
    • 3
  • Lynlee L. Lin
    • 3
    • 4
  • Margaret K. Butler
    • 5
    • 6
  • Jeffrey E. Grice
    • 3
  • Anthony P. Raphael
    • 3
    • 4
    • 5
  • Tobias Kraus
    • 7
  • Labiba K. El-Khordagui
    • 2
  • H. Peter Soyer
    • 4
  • Michael S. Roberts
    • 3
    • 8
  • Marc Schneider
    • 1
    Email author
  • Tarl W. Prow
    • 3
    • 4
    Email author
  1. 1.Department of Pharmaceutical NanotechnologySaarland UniversitySaarbrückenGermany
  2. 2.Department of PharmaceuticsAlexandria UniversityAlexandriaEgypt
  3. 3.Therapeutics Research UnitThe University of QueenslandBrisbaneAustralia
  4. 4.Dermatology Research Centre, School of MedicineThe University of Queensland, Princess Alexandra HospitalBrisbaneAustralia
  5. 5.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia
  6. 6.Australian Microscopy and Microanalysis Research FacilityThe University of QueenslandBrisbaneAustralia
  7. 7.Structure Formation GroupINM InstituteSaarbrückenGermany
  8. 8.School of Pharmacy and Medical ScienceThe University of South AustraliaAdelaideAustralia

Personalised recommendations