Pharmaceutical Research

, Volume 29, Issue 2, pp 375–383 | Cite as

Palmitoyl Ascorbate Liposomes and Free Ascorbic Acid: Comparison of Anticancer Therapeutic Effects Upon Parenteral Administration

  • Rupa R. Sawant
  • Onkar S. Vaze
  • Tao Wang
  • Gerard G. M. D’Souza
  • Karen Rockwell
  • Keyur Gada
  • Ban-An Khaw
  • Vladimir P. Torchilin
Research Paper



To evaluate and compare anticancer therapeutic effect of palmitoyl ascorbate liposomes (PAL) and free ascorbic acid (AA).


Liposomes incorporating palmitoyl ascorbate (PA) were prepared and evaluated for PA content by HPLC. To elucidate mechanism of action of cell death in vitro, effect of various H2O2 scavengers and metal chelators on PA-mediated cytotoxicity was studied. Effect of various combinations of PAL and free AA on in vitro cytotoxicity was evaluated on 4T1 cells. In vivo, PAL formulation was modified with polyethylene glycol; effect of PEGylation on in vitro cytotoxicity was evaluated. Biodistribution of PEG-PAL formulation was investigated in female Balb/c mice bearing murine mammary carcinoma (4T1 cells). In vivo anticancer activity of PEG-PAL (PEG-PAL equivalent to 20 mg/kg of PA injected intravenously on alternate days) was compared with free AA therapy in same model.


PEG-PAL treatment was significantly more effective than free AA treatment in slowing tumor growth.


Nanoparticle formulations incorporating PA can kill cancer cells in vitro. The mechanism of PA cytotoxicity is based on production of extracellular reactive oxygen species and involves intracellular transition metals.


ascorbic acid cancer liposomes palmitoyl ascorbate 



ascorbic acid


dehydroascorbic acid


desferrioxamine mesylate


Dulbecco’s Modified Eagle Medium


1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-diethylenetriaminepentaacetic acid


ethylenediaminetetraacetic acid


fetal bovine serum


glucose transporters


hypoxia-inducible factors


palmitoyl ascorbate


palmitoyl ascorbate liposomes


1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (poly (ethylene glycol))-2000] (PEG2000-PE)


plain liposomes


reactive oxygen species


superoxide dismutase


tris(2-carboxyethyl) phosphine hydrochloride


  1. 1.
    Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA. 2008;105(32):11105–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci USA. 2007;104(21):8749–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Belin S, Kaya F, Duisit G, Giacometti S, Ciccolini J, Fontes M. Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression. PLoS One. 2009;4(2):e4409.PubMedCrossRefGoogle Scholar
  4. 4.
    Verrax J, Calderon PB. Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects. Free Radic Biol Med. 2009;47(1):32–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoffer LJ, Levine M, Assouline S, Melnychuk D, Padayatty SJ, Rosadiuk K, et al. clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol. 2008;19(11):1969–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1976;73(10):3685–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1978;75(9):4538–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Yeom CH, Jung GC, Song KJ. Changes of terminal cancer patients’ health-related quality of life after high dose vitamin C administration. J Korean Med Sci. 2007;22(1):7–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007;9(2):E128–47.PubMedCrossRefGoogle Scholar
  10. 10.
    Miwa N, Yamazaki H, Nagaoka Y, Kageyama K, Onoyama Y, Matsui-Yuasa I, et al. Altered production of the active oxygen species is involved in enhanced cytotoxic action of acylated derivatives of ascorbate to tumor cells. Biochim Biophys Acta. 1988;972(2):144–51.PubMedCrossRefGoogle Scholar
  11. 11.
    D’Souza GG, Wang T, Rockwell K, Torchilin VP. Surface modification of pharmaceutical nanocarriers with ascorbate residues improves their tumor-cell association and killing and the cytotoxic action of encapsulated paclitaxel in vitro. Pharm Res. 2008;25(11):2567–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Sawant RR, Vaze OS, Rockwell K, Torchilin VP. Palmitoyl ascorbate-modified liposomes as nanoparticle platform for ascorbate-mediated cytotoxicity and paclitaxel co-delivery. Eur J Pharm Biopharm. 2010;75(3):321–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Agus DB, Vera JC, Golde DW. Stromal cell oxidation: a mechanism by which tumors obtain vitamin C. Cancer Res. 1999;59(18):4555–8.PubMedGoogle Scholar
  14. 14.
    Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, Vera JC, et al. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest. 1997;100(11):2842–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem. 1997;272(30):18982–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem. 2000;275(36):28246–53.PubMedGoogle Scholar
  17. 17.
    Dai J, Weinberg RS, Waxman S, Jing Y. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood. 1999;93(1):268–77.PubMedGoogle Scholar
  18. 18.
    Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, Verma A. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem. 2005;280(51):41928–39.PubMedCrossRefGoogle Scholar
  19. 19.
    Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, et al. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol. 2007;27(3):912–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res. 2003;63(8):1764–8.PubMedGoogle Scholar
  21. 21.
    Vissers MC, Gunningham SP, Morrison MJ, Dachs GU, Currie MJ. Modulation of hypoxia-inducible factor-1 alpha in cultured primary cells by intracellular ascorbate. Free Radic Biol Med. 2007;42(6):765–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Knowles HJ, Mole DR, Ratcliffe PJ, Harris AL. Normoxic stabilization of hypoxia-inducible factor-1alpha by modulation of the labile iron pool in differentiating U937 macrophages: effect of natural resistance-associated macrophage protein 1. Cancer Res. 2006;66(5):2600–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA. 2005;102(38):13604–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Rosenblat G, Graham MF, Jonas A, Tarshis M, Schubert SY, Tabak M, et al. Effect of ascorbic acid and its hydrophobic derivative palmitoyl ascorbate on the redox state of primary human fibroblasts. J Med Food. 2001;4(2):107–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994;54(13):3352–6.PubMedGoogle Scholar
  26. 26.
    Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140(7):533–7.PubMedGoogle Scholar
  27. 27.
    Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci USA. 1996;93(8):3704–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156(4):1363–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA. 2007;104(39):15549–54.PubMedCrossRefGoogle Scholar
  32. 32.
    Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66(13):6732–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Kurbacher CM, Wagner U, Kolster B, Andreotti PE, Krebs D, Bruckner HW. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett. 1996;103(2):183–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Bahlis NJ, McCafferty-Grad J, Jordan-McMurry I, Neil J, Reis I, Kharfan-Dabaja M, et al. Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma. Clin Cancer Res. 2002;8(12):3658–68.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rupa R. Sawant
    • 1
  • Onkar S. Vaze
    • 1
  • Tao Wang
    • 1
  • Gerard G. M. D’Souza
    • 1
    • 2
  • Karen Rockwell
    • 1
  • Keyur Gada
    • 1
  • Ban-An Khaw
    • 1
  • Vladimir P. Torchilin
    • 1
  1. 1.Center for Pharmaceutical Biotechnology and NanomedicineNortheastern UniversityBostonUSA
  2. 2.Department of Pharmaceutical SciencesMassachusetts College of Pharmacy and Health SciencesBostonUSA

Personalised recommendations