Pharmaceutical Research

, Volume 28, Issue 12, pp 2966–2982

Antiviral RNAi: Translating Science Towards Therapeutic Success

Expert Review


Viruses continuously evolve to contend with an ever-changing environment that involves transmission between hosts and sometimes species, immune responses, and in some cases therapeutic interventions. Given the high mutation rate of viruses relative to the timescales of host evolution and drug development, novel drug classes that are readily screened and translated to the clinic are needed. RNA interference (RNAi)—a natural mechanism for specific degradation of target RNAs that is conserved from plants to invertebrates and vertebrates—can potentially be harnessed to yield therapies with extensive specificity, ease of design, and broad application. In this review, we discuss basic mechanisms of action and therapeutic applications of RNAi, including design considerations and areas for future development in the field.


antiviral gene therapy RNA interference (RNAi) viral escape 


  1. 1.
    Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science. 2008;319(5865):921–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature. 2010;463(7282):818–22.PubMedCrossRefGoogle Scholar
  3. 3.
    Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, et al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell. 2008;135(1):49–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, Sultana H, et al. RNA interference screen for human genes associated with West Nile virus infection. Nature. 2008;455(7210):242–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, Pfeffer S, et al. Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci USA. 2007;104(31):12884–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, et al. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe. 2008;4(5):495–504.PubMedCrossRefGoogle Scholar
  7. 7.
    Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet. 2008;9(4):267–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Kamp CW, CO, Adami, C, Bornholdt, S. Viral evolution under the pressure of an adaptive immune system-optimal mutation rates for viral escape. Complexity. 2002.Google Scholar
  9. 9.
    Clavel F, Hance AJ. HIV drug resistance. N Engl J Med. 2004;350(10):1023–35.PubMedGoogle Scholar
  10. 10.
    Hayden FG, de Jong MD. Emerging influenza antiviral resistance threats. J Infect Dis. 2011;203(1):6–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith RJ, Okano JT, Kahn JS, Bodine EN, Blower S. Evolutionary dynamics of complex networks of HIV drug-resistant strains: the case of San Francisco. Science. 2010;327(5966):697–701.PubMedCrossRefGoogle Scholar
  12. 12.
    Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2(4):279–89.PubMedCrossRefGoogle Scholar
  13. 13.
    Al-Kaff NS, Covey SN, Kreike MM, Page AM, Pinder R, Dale PJ. Transcriptional and posttranscriptional plant gene silencing in response to a pathogen. Science. 1998;279(5359):2113–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Ratcliff F, Harrison BD, Baulcombe DC. A similarity between viral defense and gene silencing in plants. Science. 1997;276(5318):1558–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Li H, Li WX, Ding SW. Induction and suppression of RNA silencing by an animal virus. Science. 2002;296(5571):1319–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Schott DH, Cureton DK, Whelan SP, Hunter CP. An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2005;102(51):18420–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Myles KM, Wiley MR, Morazzani EM, Adelman ZN. Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc Natl Acad Sci USA. 2008;105(50):19938–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet. 2006;50(2):81–99.PubMedCrossRefGoogle Scholar
  20. 20.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Gu S, Jin L, Zhang F, Huang Y, Grimm D, Rossi JJ, et al. Thermodynamic stability of small hairpin RNAs highly influences the loading process of different mammalian Argonautes. Proc Natl Acad Sci USA. 2011;108(22):9208–13.PubMedCrossRefGoogle Scholar
  22. 22.
    Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209–16.PubMedCrossRefGoogle Scholar
  23. 23.
    Song JJ, Smith SK, Hannon GJ, Joshua-Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science. 2004;305(5689):1434–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol. 2005;12(4):340–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Samuel-Abraham S, Leonard JN. Staying on message: design principles for controlling nonspecific responses to siRNA. FEBS J. 2010;277(23):4828–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64.PubMedCrossRefGoogle Scholar
  27. 27.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296(5567):550–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev. 2002;16(13):1616–26.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Humphreys DT, Westman BJ, Martin DI, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA. 2005;102(47):16961–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005;309(5740):1573–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006;20(14):1885–98.PubMedCrossRefGoogle Scholar
  38. 38.
    Pomerantz RJ, Horn DL. Twenty years of therapy for HIV-1 infection. Nat Med. 2003;9(7):867–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21(6):635–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature. 2002;418(6896):435–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Purcell DF, Russell SM, Deacon NJ, Brown MA, Hooker DJ, McKenzie IF. Alternatively spliced RNAs encode several isoforms of CD46 (MCP), a regulator of complement activation. Immunogenetics. 1991;33(5–6):335–44.PubMedCrossRefGoogle Scholar
  42. 42.
    Leonard JN, Schaffer DV. Computational design of antiviral RNA interference strategies that resist human immunodeficiency virus escape. J Virol. 2005;79(3):1645–54.PubMedCrossRefGoogle Scholar
  43. 43.
    von Laer D, Hasselmann S, Hasselmann K. Impact of gene-modified T cells on HIV infection dynamics. J Theor Biol. 2006;238(1):60–77.CrossRefGoogle Scholar
  44. 44.
    Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides. 2003;13(5):303–12.PubMedCrossRefGoogle Scholar
  45. 45.
    Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Chiu YL, Cao H, Jacque JM, Stevenson M, Rana TM. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol. 2004;78(5):2517–29.PubMedCrossRefGoogle Scholar
  47. 47.
    Bushman FD, Malani N, Fernandes J, D’Orso I, Cagney G, Diamond TL, et al. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog. 2009;5(5):e1000437.PubMedCrossRefGoogle Scholar
  48. 48.
    Ameres SL, Martinez J, Schroeder R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell. 2007;130(1):101–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Gredell JA, Berger AK, Walton SP. Impact of target mRNA structure on siRNA silencing efficiency: a large-scale study. Biotechnol Bioeng. 2008.Google Scholar
  50. 50.
    Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22(3):326–30.PubMedCrossRefGoogle Scholar
  51. 51.
    Schwarz DS, Ding H, Kennington L, Moore JT, Schelter J, Burchard J, et al. Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet. 2006;2(9):e140.PubMedCrossRefGoogle Scholar
  52. 52.
    Naito Y, Ui-Tei K, Nishikawa T, Takebe Y, Saigo K. siVirus: web-based antiviral siRNA design software for highly divergent viral sequences. Nucleic Acids Res. 2006;34(Web Server issue):W448–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Willerth SM, Pedro HA, Pachter L, Humeau LM, Arkin AP, Schaffer DV. Development of a low bias method for characterizing viral populations using next generation sequencing technology. PLoS One. 2010;5(10):e13564.PubMedCrossRefGoogle Scholar
  54. 54.
    Lee HS, Ahn J, Jun EJ, Yang S, Joo CH, Kim YK, et al. A novel program to design siRNAs simultaneously effective to highly variable virus genomes. Biochem Biophys Res Commun. 2009;384(4):431–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Kosuri S, Eroshenko N, Leproust EM, Super M, Way J, Li JB, et al. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol. 2010;28(12):1295–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Bassik MC, Lebbink RJ, Churchman LS, Ingolia NT, Patena W, LeProust EM, et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat Methods. 2009;6(6):443–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Luo B, Heard AD, Lodish HF. Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc Natl Acad Sci USA. 2004;101(15):5494–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Pongratz C, Yazdanpanah B, Kashkar H, Lehmann MJ, Krausslich HG, Kronke M. Selection of potent non-toxic inhibitory sequences from a randomized HIV-1 specific lentiviral short hairpin RNA library. PLoS One. 2010;5(10):e13172.PubMedCrossRefGoogle Scholar
  59. 59.
    Sen G, Wehrman TS, Myers JW, Blau HM. Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nat Genet. 2004;36(2):183–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Shirane D, Sugao K, Namiki S, Tanabe M, Iino M, Hirose K. Enzymatic production of RNAi libraries from cDNAs. Nat Genet. 2004;36(2):190–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet. 2005;37(11):1281–8.PubMedGoogle Scholar
  62. 62.
    Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med. 2005;11(1):50–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Di Nicola-Negri E, Brunetti A, Tavazza M, Ilardi V. Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res. 2005;14(6):989–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, et al. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA. 2006;103(11):4198–203.PubMedCrossRefGoogle Scholar
  65. 65.
    Wakiyama M, Matsumoto T, Yokoyama S. Drosophila U6 promoter-driven short hairpin RNAs effectively induce RNA interference in Schneider 2 cells. Biochem Biophys Res Commun. 2005;331(4):1163–70.PubMedCrossRefGoogle Scholar
  66. 66.
    DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med. 2010;2(36):36ra43.PubMedCrossRefGoogle Scholar
  67. 67.
    Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell. 2008;134(4):577–86.PubMedCrossRefGoogle Scholar
  68. 68.
    Neff CP, Zhou J, Remling L, Kuruvilla J, Zhang J, Li H, et al. An Aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4+ T cell decline in humanized mice. Sci Transl Med. 2011;3(66):66ra6.PubMedCrossRefGoogle Scholar
  69. 69.
    Choung S, Kim YJ, Kim S, Park HO, Choi YC. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun. 2006;342(3):919–27.PubMedCrossRefGoogle Scholar
  70. 70.
    Bramsen JB, Laursen MB, Nielsen AF, Hansen TB, Bus C, Langkjaer N, et al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res. 2009;37(9):2867–81.PubMedCrossRefGoogle Scholar
  71. 71.
    Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42(26):7967–75.PubMedCrossRefGoogle Scholar
  72. 72.
    Yokota T, Iijima S, Kubodera T, Ishii K, Katakai Y, Ageyama N, et al. Efficient regulation of viral replication by siRNA in a non-human primate surrogate model for hepatitis C. Biochem Biophys Res Commun. 2007;361(2):294–300.PubMedCrossRefGoogle Scholar
  73. 73.
    Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448(7149):39–43.PubMedCrossRefGoogle Scholar
  74. 74.
    van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature. 2002;415(6875):1030–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Pan D, Gunther R, Duan W, Wendell S, Kaemmerer W, Kafri T, et al. Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol Ther. 2002;6(1):19–29.PubMedCrossRefGoogle Scholar
  76. 76.
    Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 2009;27(1):59–65.PubMedCrossRefGoogle Scholar
  77. 77.
    Stein CS, Martins I, Davidson BL. The lymphocytic choriomeningitis virus envelope glycoprotein targets lentiviral gene transfer vector to neural progenitors in the murine brain. Mol Ther. 2005;11(3):382–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Flotte TR, Afione SA, Conrad C, McGrath SA, Solow R, Oka H, et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci USA. 1993;90(22):10613–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Lim KI, Klimczak R, Yu JH, Schaffer DV. Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties. Proc Natl Acad Sci USA. 2010;107(28):12475–80.PubMedCrossRefGoogle Scholar
  81. 81.
    Chen W, Liu M, Jiao Y, Yan W, Wei X, Chen J, et al. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo. J Virol. 2006;80(7):3559–66.PubMedCrossRefGoogle Scholar
  82. 82.
    Snyder LL, Esser JM, Pachuk CJ, Steel LF. Vector design for liver-specific expression of multiple interfering RNAs that target hepatitis B virus transcripts. Antiviral Res. 2008;80(1):36–44.PubMedCrossRefGoogle Scholar
  83. 83.
    Strayer DS, Feitelson M, Sun B, Matskevich AA. Paradigms for conditional expression of RNA interference molecules for use against viral targets. Methods Enzymol. 2005;392:227–41.PubMedCrossRefGoogle Scholar
  84. 84.
    Kim SS, Peer D, Kumar P, Subramanya S, Wu H, Asthana D, et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther. 2010;18(2):370–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Ponnazhagan S, Mahendra G, Kumar S, Thompson JA, Castillas Jr M. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol. 2002;76(24):12900–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Kobinger GP, Weiner DJ, Yu QC, Wilson JM. Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol. 2001;19(3):225–30.PubMedCrossRefGoogle Scholar
  87. 87.
    Excoffon KJ, Koerber JT, Dickey DD, Murtha M, Keshavjee S, Kaspar BK, et al. Directed evolution of adeno-associated virus to an infectious respiratory virus. Proc Natl Acad Sci USA. 2009;106(10):3865–70.PubMedCrossRefGoogle Scholar
  88. 88.
    Jang JH, Koerber JT, Kim JS, Asuri P, Vazin T, Bartel M, et al. An evolved adeno-associated viral variant enhances gene delivery and gene targeting in neural stem cells. Mol Ther. 2011.Google Scholar
  89. 89.
    Leonard JN, Shah PS, Burnett JC, Schaffer DV. HIV evades RNA interference directed at TAR by an indirect compensatory mechanism. Cell Host Microbe. 2008;4(5):484–94.PubMedCrossRefGoogle Scholar
  90. 90.
    Applegate TL, Birkett DJ, McIntyre GJ, Jaramillo AB, Symonds G, Murray JM. In silico modeling indicates the development of HIV-1 resistance to multiple shRNA gene therapy differs to standard antiretroviral therapy. Retrovirology. 2010;7:83.PubMedCrossRefGoogle Scholar
  91. 91.
    Westerhout EM, ter Brake O, Berkhout B. The virion-associated incoming HIV-1 RNA genome is not targeted by RNA interference. Retrovirology. 2006;3:57.PubMedCrossRefGoogle Scholar
  92. 92.
    Du Q, Thonberg H, Wang J, Wahlestedt C, Liang Z. A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res. 2005;33(5):1671–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Westerhout EM, Ooms M, Vink M, Das AT, Berkhout B. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res. 2005;33(2):796–804.PubMedCrossRefGoogle Scholar
  94. 94.
    Boden D, Pusch O, Lee F, Tucker L, Ramratnam B. Human immunodeficiency virus type 1 escape from RNA interference. J Virol. 2003;77(21):11531–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature. 2002;418(6896):430–4.PubMedCrossRefGoogle Scholar
  96. 96.
    Wilson JA, Richardson CD. Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J Virol. 2005;79(11):7050–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Lauring AS, Andino R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010;6(7):e1001005.PubMedCrossRefGoogle Scholar
  98. 98.
    Wu HL, Huang LR, Huang CC, Lai HL, Liu CJ, Huang YT, et al. RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant. Gastroenterology. 2005;128(3):708–16.PubMedCrossRefGoogle Scholar
  99. 99.
    Christensen HS, Daher A, Soye KJ, Frankel LB, Alexander MR, Laine S, et al. Small interfering RNAs against the TAR RNA binding protein, TRBP, a Dicer cofactor, inhibit human immunodeficiency virus type 1 long terminal repeat expression and viral production. J Virol. 2007;81(10):5121–31.PubMedCrossRefGoogle Scholar
  100. 100.
    Eekels JJ, Geerts D, Jeeninga RE, Berkhout B. Long-term inhibition of HIV-1 replication with RNA interference against cellular co-factors. Antiviral Res. 2010.Google Scholar
  101. 101.
    Ji J, Wernli M, Klimkait T, Erb P. Enhanced gene silencing by the application of multiple specific small interfering RNAs. FEBS Lett. 2003;552(2–3):247–52.PubMedCrossRefGoogle Scholar
  102. 102.
    Kameoka M, Nukuzuma S, Itaya A, Tanaka Y, Ota K, Ikuta K, et al. RNA interference directed against Poly(ADP-Ribose) polymerase 1 efficiently suppresses human immunodeficiency virus type 1 replication in human cells. J Virol. 2004;78(16):8931–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Koga H, Ohshima T, Shimotohno K. Enhanced activation of tax-dependent transcription of human T-cell leukemia virus type I (HTLV-I) long terminal repeat by TORC3. J Biol Chem. 2004;279(51):52978–83.PubMedCrossRefGoogle Scholar
  104. 104.
    Komano J, Miyauchi K, Matsuda Z, Yamamoto N. Inhibiting the Arp2/3 complex limits infection of both intracellular mature vaccinia virus and primate lentiviruses. Mol Biol Cell. 2004;15(12):5197–207.PubMedCrossRefGoogle Scholar
  105. 105.
    Modem S, Badri KR, Holland TC, Reddy TR. Sam68 is absolutely required for Rev function and HIV-1 production. Nucleic Acids Res. 2005;33(3):873–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Sun L, Hemgard GV, Susanto SA, Wirth M. Caveolin-1 influences human influenza A virus (H1N1) multiplication in cell culture. Virol J. 2010;7:108.PubMedCrossRefGoogle Scholar
  107. 107.
    Pan Q, Henry SD, Metselaar HJ, Scholte B, Kwekkeboom J, Tilanus HW, et al. Combined antiviral activity of interferon-alpha and RNA interference directed against hepatitis C without affecting vector delivery and gene silencing. J Mol Med. 2009;87(7):713–22.PubMedCrossRefGoogle Scholar
  108. 108.
    von Eije KJ, ter Brake O, Berkhout B. Human immunodeficiency virus type 1 escape is restricted when conserved genome sequences are targeted by RNA interference. J Virol. 2008;82(6):2895–903.CrossRefGoogle Scholar
  109. 109.
    Naito Y, Nohtomi K, Onogi T, Uenishi R, Ui-Tei K, Saigo K, et al. Optimal design and validation of antiviral siRNA for targeting HIV-1. Retrovirology. 2007;4:80.PubMedCrossRefGoogle Scholar
  110. 110.
    ter Brake O, Konstantinova P, Ceylan M, Berkhout B. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther. 2006;14(6):883–92.PubMedCrossRefGoogle Scholar
  111. 111.
    Henry SD, van der Wegen P, Metselaar HJ, Tilanus HW, Scholte BJ, van der Laan LJ. Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes. Mol Ther. 2006;14(4):485–93.PubMedCrossRefGoogle Scholar
  112. 112.
    McIntyre GJ, Groneman JL, Yu YH, Tran A, Applegate TL. Multiple shRNA combinations for near-complete coverage of all HIV-1 strains. AIDS Res Ther. 2011;8(1):1.PubMedCrossRefGoogle Scholar
  113. 113.
    Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41.PubMedCrossRefGoogle Scholar
  114. 114.
    Castanotto D, Sakurai K, Lingeman R, Li H, Shively L, Aagaard L, et al. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res. 2007;35(15):5154–64.PubMedCrossRefGoogle Scholar
  115. 115.
    McIntyre GJ, Yu YH, Tran A, Jaramillo AB, Arndt AJ, Millington ML, et al. Cassette deletion in multiple shRNA lentiviral vectors for HIV-1 and its impact on treatment success. Virol J. 2009;6:184.PubMedCrossRefGoogle Scholar
  116. 116.
    ter Brake O, t Hooft K, Liu YP, Centlivre M, von Eije KJ, Berkhout B. Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther. 2008;16(3):557–64.PubMedCrossRefGoogle Scholar
  117. 117.
    Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA. 2005;102(37):13212–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Bannister SC, Wise TG, Cahill DM, Doran TJ. Comparison of chicken 7SK and U6 RNA polymerase III promoters for short hairpin RNA expression. BMC Biotechnol. 2007;7:79.PubMedCrossRefGoogle Scholar
  119. 119.
    Lambeth LS, Zhao Y, Smith LP, Kgosana L, Nair V. Targeting Marek’s disease virus by RNA interference delivered from a herpesvirus vaccine. Vaccine. 2009;27(2):298–306.PubMedCrossRefGoogle Scholar
  120. 120.
    Liu YP, Haasnoot J, ter Brake O, Berkhout B, Konstantinova P. Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res. 2008;36(9):2811–24.PubMedCrossRefGoogle Scholar
  121. 121.
    Saayman S, Arbuthnot P, Weinberg MS. Deriving four functional anti-HIV siRNAs from a single Pol III-generated transcript comprising two adjacent long hairpin RNA precursors. Nucleic Acids Res. 2010.Google Scholar
  122. 122.
    Aviran S, Shah PS, Schaffer DV, Arkin AP. Computational models of HIV-1 resistance to gene therapy elucidate therapy design principles. PLoS Comput Biol. 2010;6(8).Google Scholar
  123. 123.
    Schopman NC, ter Brake O, Berkhout B. Anticipating and blocking HIV-1 escape by second generation antiviral shRNAs. Retrovirology. 2010;7:52.PubMedCrossRefGoogle Scholar
  124. 124.
    ter Brake O, Berkhout B. A novel approach for inhibition of HIV-1 by RNA interference: counteracting viral escape with a second generation of siRNAs. J RNAi Gene Silencing. 2005;1(2):56–65.PubMedGoogle Scholar
  125. 125.
    Werk D, Pinkert S, Heim A, Zeichhardt H, Grunert HP, Poller W, et al. Combination of soluble coxsackievirus-adenovirus receptor and anti-coxsackievirus siRNAs exerts synergistic antiviral activity against coxsackievirus B3. Antiviral Res. 2009;83(3):298–306.PubMedCrossRefGoogle Scholar
  126. 126.
    Huelsmann PM, Rauch P, Allers K, John MJ, Metzner KJ. Inhibition of drug-resistant HIV-1 by RNA interference. Antiviral Res. 2006;69(1):1–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, et al. A viral suppressor of gene silencing in plants. Proc Natl Acad Sci USA. 1998;95(22):13079–84.PubMedCrossRefGoogle Scholar
  128. 128.
    Voinnet O, Pinto YM, Baulcombe DC. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA. 1999;96(24):14147–52.PubMedCrossRefGoogle Scholar
  129. 129.
    Bennasser Y, Le SY, Benkirane M, Jeang KT. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity. 2005;22(5):607–19.PubMedCrossRefGoogle Scholar
  130. 130.
    Haasnoot J, de Vries W, Geutjes EJ, Prins M, de Haan P, Berkhout B. The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog. 2007;3(6):e86.PubMedCrossRefGoogle Scholar
  131. 131.
    Li WX, Li H, Lu R, Li F, Dus M, Atkinson P, et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci USA. 2004;101(5):1350–5.PubMedCrossRefGoogle Scholar
  132. 132.
    Lu R, Maduro M, Li F, Li HW, Broitman-Maduro G, Li WX, et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature. 2005;436(7053):1040–3.PubMedCrossRefGoogle Scholar
  133. 133.
    Soldan SS, Plassmeyer ML, Matukonis MK, Gonzalez-Scarano F. La Crosse virus nonstructural protein NSs counteracts the effects of short interfering RNA. J Virol. 2005;79(1):234–44.PubMedCrossRefGoogle Scholar
  134. 134.
    Umbach JL, Cullen BR. The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev. 2009;23(10):1151–64.PubMedCrossRefGoogle Scholar
  135. 135.
    Chao JA, Lee JH, Chapados BR, Debler EW, Schneemann A, Williamson JR. Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nat Struct Mol Biol. 2005;12(11):952–7.PubMedGoogle Scholar
  136. 136.
    Nayak A, Berry B, Tassetto M, Kunitomi M, Acevedo A, Deng C, et al. Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nat Struct Mol Biol. 2010;17(5):547–54.PubMedCrossRefGoogle Scholar
  137. 137.
    Singh G, Popli S, Hari Y, Malhotra P, Mukherjee S, Bhatnagar RK. Suppression of RNA silencing by Flock house virus B2 protein is mediated through its interaction with the PAZ domain of Dicer. FASEB J. 2009;23(6):1845–57.PubMedCrossRefGoogle Scholar
  138. 138.
    Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med. 2007;13(10):1241–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature. 2008;454(7205):780–3.PubMedGoogle Scholar
  140. 140.
    Barth S, Pfuhl T, Mamiani A, Ehses C, Roemer K, Kremmer E, et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 2008;36(2):666–75.PubMedCrossRefGoogle Scholar
  141. 141.
    Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature. 2005;435(7042):682–6.PubMedCrossRefGoogle Scholar
  142. 142.
    Grey F, Antoniewicz A, Allen E, Saugstad J, McShea A, Carrington JC, et al. Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol. 2005;79(18):12095–9.PubMedCrossRefGoogle Scholar
  143. 143.
    DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA. 2010;107(19):8800–5.PubMedCrossRefGoogle Scholar
  144. 144.
    Haussecker D. The business of RNAi therapeutics. Hum Gene Ther. 2008;19(5):451–62.PubMedCrossRefGoogle Scholar
  145. 145.
    Tiemann K, Rossi JJ. RNAi-based therapeutics-current status, challenges and prospects. EMBO Mol Med. 2009;1(3):142–51.PubMedCrossRefGoogle Scholar
  146. 146.
    Couzin-Frankel J. Drug research. Roche exits RNAi field, cuts 4800 jobs. Science. 2010;330(6008):1163.PubMedCrossRefGoogle Scholar
  147. 147.
    Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE. RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci USA. 2004;101(49):17240–5.PubMedCrossRefGoogle Scholar
  148. 148.
    Franz AW, Sanchez-Vargas I, Piper J, Smith MR, Khoo CC, James AA, et al. Stability and loss of a virus resistance phenotype over time in transgenic mosquitoes harbouring an antiviral effector gene. Insect Mol Biol. 2009;18(5):661–72.PubMedCrossRefGoogle Scholar
  149. 149.
    Boete C, Koella JC. A theoretical approach to predicting the success of genetic manipulation of malaria mosquitoes in malaria control. Malar J. 2002;1:3.PubMedCrossRefGoogle Scholar
  150. 150.
    Sanchez AB, Perez M, Cornu T, de la Torre JC. RNA interference-mediated virus clearance from cells both acutely and chronically infected with the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol. 2005;79(17):11071–81.PubMedCrossRefGoogle Scholar
  151. 151.
    Chen M, Granger AJ, Vanbrocklin MW, Payne WS, Hunt H, Zhang H, et al. Inhibition of avian leukosis virus replication by vector-based RNA interference. Virology. 2007;365(2):464–72.PubMedCrossRefGoogle Scholar
  152. 152.
    Gao Y, Liu W, Gao H, Qi X, Lin H, Wang X, et al. Effective inhibition of infectious bursal disease virus replication in vitro by DNA vector-based RNA interference. Antiviral Res. 2008;79(2):87–94.PubMedCrossRefGoogle Scholar
  153. 153.
    Kim YJ, Ahn J, Jeung SY, Kim DS, Na HN, Cho YJ, et al. Recombinant lentivirus-delivered short hairpin RNAs targeted to conserved coxsackievirus sequences protect against viral myocarditis and improve survival rate in an animal model. Virus Genes. 2008;36(1):141–6.PubMedCrossRefGoogle Scholar
  154. 154.
    Tan EL, Wong AP, Poh CL. Development of potential antiviral strategy against coxsackievirus B4. Virus Res. 2010;150(1–2):85–92.PubMedCrossRefGoogle Scholar
  155. 155.
    Subramanya S, Kim SS, Abraham S, Yao J, Kumar M, Kumar P, et al. Targeted delivery of small interfering RNA to human dendritic cells to suppress dengue virus infection and associated proinflammatory cytokine production. J Virol. 2010;84(5):2490–501.PubMedCrossRefGoogle Scholar
  156. 156.
    Heinrich A, Riethmuller D, Gloger M, Schusser GF, Giese M, Ulbert S. RNA interference protects horse cells in vitro from infection with Equine Arteritis Virus. Antiviral Res. 2009;81(3):209–16.PubMedCrossRefGoogle Scholar
  157. 157.
    Chang Y, Chang SS, Lee HH, Doong SL, Takada K, Tsai CH. Inhibition of the Epstein-Barr virus lytic cycle by Zta-targeted RNA interference. J Gen Virol. 2004;85(Pt 6):1371–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Tan EL, Marcus KF, Poh CL. Development of RNA interference (RNAi) as potential antiviral strategy against enterovirus 70. J Med Virol. 2008;80(6):1025–32.PubMedCrossRefGoogle Scholar
  159. 159.
    Sinn PL, Sauter SL, McCray Jr PB. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors–design, biosafety, and production. Gene Ther. 2005;12(14):1089–98.PubMedCrossRefGoogle Scholar
  160. 160.
    Tan EL, Tan TM, Tak Kwong Chow V, Poh CL. Inhibition of enterovirus 71 in virus-infected mice by RNA interference. Mol Ther. 2007;15(11):1931–8.PubMedCrossRefGoogle Scholar
  161. 161.
    Wu Z, Yang F, Zhao R, Zhao L, Guo D, Jin Q. Identification of small interfering RNAs which inhibit the replication of several Enterovirus 71 strains in China. J Virol Methods. 2009;159(2):233–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Chen W, Yan W, Du Q, Fei L, Liu M, Ni Z, et al. RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and suckling mice. J Virol. 2004;78(13):6900–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Kahana R, Kuznetzova L, Rogel A, Shemesh M, Hai D, Yadin H, et al. Inhibition of foot-and-mouth disease virus replication by small interfering RNA. J Gen Virol. 2004;85(Pt 11):3213–7.PubMedCrossRefGoogle Scholar
  164. 164.
    Jia F, Zhang YZ, Liu CM. Stable inhibition of hepatitis B virus expression and replication in HepG2.2.15 cells by RNA interference based on retrovirus delivery. J Biotechnol. 2007;128(1):32–40.PubMedCrossRefGoogle Scholar
  165. 165.
    Keck K, Volper EM, Spengler RM, Long DD, Chan CY, Ding Y, et al. Rational design leads to more potent RNA interference against hepatitis B virus: factors effecting silencing efficiency. Mol Ther. 2009;17(3):538–47.PubMedCrossRefGoogle Scholar
  166. 166.
    McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol. 2003;21(6):639–44.PubMedCrossRefGoogle Scholar
  167. 167.
    Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology. 2003;37(4):764–70.PubMedCrossRefGoogle Scholar
  168. 168.
    Wu CJ, Huang HW, Liu CY, Hong CF, Chan YL. Inhibition of SARS-CoV replication by siRNA. Antiviral Res. 2005;65(1):45–8.PubMedCrossRefGoogle Scholar
  169. 169.
    Ying RS, Zhu C, Fan XG, Li N, Tian XF, Liu HB, et al. Hepatitis B virus is inhibited by RNA interference in cell culture and in mice. Antiviral Res. 2007;73(1):24–30.PubMedCrossRefGoogle Scholar
  170. 170.
    Wiebusch L, Truss M, Hagemeier C. Inhibition of human cytomegalovirus replication by small interfering RNAs. J Gen Virol. 2004;85(Pt 1):179–84.PubMedCrossRefGoogle Scholar
  171. 171.
    Chevalier C, Saulnier A, Benureau Y, Flechet D, Delgrange D, Colbere-Garapin F, et al. Inhibition of hepatitis C virus infection in cell culture by small interfering RNAs. Mol Ther. 2007;15(8):1452–62.PubMedCrossRefGoogle Scholar
  172. 172.
    Kapadia SB, Brideau-Andersen A, Chisari FV. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci USA. 2003;100(4):2014–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Trejo-Avila L, Elizondo-Gonzalez R, Trujillo-Murillo Kdel C, Zapata-Benavides P, Rodriguez-Padilla C, Rivas-Estilla AM. Antiviral therapy: inhibition of Hepatitis C Virus expression by RNA interference directed against the NS5B region of the viral genome. Ann Hepatol. 2007;6(3):174–80.PubMedGoogle Scholar
  174. 174.
    Zhang J, Yamada O, Sakamoto T, Yoshida H, Iwai T, Matsushita Y, et al. Down-regulation of viral replication by adenoviral-mediated expression of siRNA against cellular cofactors for hepatitis C virus. Virology. 2004;320(1):135–43.PubMedCrossRefGoogle Scholar
  175. 175.
    Shin D, Lee H, Kim SI, Yoon Y, Kim M. Optimization of linear double-stranded RNA for the production of multiple siRNAs targeting hepatitis C virus. RNA. 2009;15(5):898–910.PubMedCrossRefGoogle Scholar
  176. 176.
    Wang Y, Kato N, Jazag A, Dharel N, Otsuka M, Taniguchi H, et al. Hepatitis C virus core protein is a potent inhibitor of RNA silencing-based antiviral response. Gastroenterology. 2006;130(3):883–92.PubMedCrossRefGoogle Scholar
  177. 177.
    Kumar A, Panda SK, Durgapal H, Acharya SK, Rehman S, Kar UK. Inhibition of Hepatitis E virus replication using short hairpin RNA (shRNA). Antiviral Res. 2010;85(3):541–50.PubMedCrossRefGoogle Scholar
  178. 178.
    Capodici J, Kariko K, Weissman D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol. 2002;169(9):5196–201.PubMedGoogle Scholar
  179. 179.
    Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R, et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol. 2004;78(5):2601–5.PubMedCrossRefGoogle Scholar
  180. 180.
    Li M, Li H, Rossi JJ. RNAi in combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapy. Ann N Y Acad Sci. 2006;1082:172–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Nishitsuji H, Kohara M, Kannagi M, Masuda T. Effective suppression of human immunodeficiency virus type 1 through a combination of short- or long-hairpin RNAs targeting essential sequences for retroviral integration. J Virol. 2006;80(15):7658–66.PubMedCrossRefGoogle Scholar
  182. 182.
    von Eije KJ, ter Brake O, Berkhout B. Stringent testing identifies highly potent and escape-proof anti-HIV short hairpin RNAs. J Gene Med. 2009;11(6):459–67.CrossRefGoogle Scholar
  183. 183.
    Yu Z, Sanchez-Velar N, Catrina IE, Kittler EL, Udofia EB, Zapp ML. The cellular HIV-1 Rev cofactor hRIP is required for viral replication. Proc Natl Acad Sci USA. 2005;102(11):4027–32.PubMedCrossRefGoogle Scholar
  184. 184.
    Liu YP, von Eije KJ, Schopman NC, Westerink JT, ter Brake O, Haasnoot J, et al. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther. 2009;17(10):1712–23.PubMedCrossRefGoogle Scholar
  185. 185.
    Liu YP, Gruber J, Haasnoot J, Konstantinova P, Berkhout B. RNAi-mediated inhibition of HIV-1 by targeting partially complementary viral sequences. Nucleic Acids Res. 2009;37(18):6194–204.PubMedCrossRefGoogle Scholar
  186. 186.
    ter Brake O, von Eije KJ, Berkhout B. Probing the sequence space available for HIV-1 evolution. AIDS (London, England). 2008;22(14):1875–7.CrossRefGoogle Scholar
  187. 187.
    Senserrich J, Pauls E, Armand-Ugon M, Clotet-Codina I, Moncunill G, Clotet B, et al. HIV-1 resistance to the anti-HIV activity of a shRNA targeting a dual-coding region. Virology. 2008;372(2):421–9.PubMedCrossRefGoogle Scholar
  188. 188.
    Jiang M, Milner J. Selective silencing of viral gene E6 and E7 expression in HPV-positive human cervical carcinoma cells using small interfering RNAs. Methods Mol Biol. 2005;292:401–20.PubMedGoogle Scholar
  189. 189.
    Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene. 2003;22(38):5938–45.PubMedCrossRefGoogle Scholar
  190. 190.
    Phipps KM, Martinez A, Lu J, Heinz BA, Zhao G. Small interfering RNA molecules as potential anti-human rhinovirus agents: in vitro potency, specificity, and mechanism. Antiviral Res. 2004;61(1):49–55.PubMedCrossRefGoogle Scholar
  191. 191.
    Bhuyan PK, Kariko K, Capodici J, Lubinski J, Hook LM, Friedman HM, et al. Short interfering RNA-mediated inhibition of herpes simplex virus type 1 gene expression and function during infection of human keratinocytes. J Virol. 2004;78(19):10276–81.PubMedCrossRefGoogle Scholar
  192. 192.
    Haddad R, Kashima S, Rodrigues ES, Azevedo R, Palma PV, Magalhaes DA, et al. Silencing of HTLV-1 gag and env genes by small interfering RNAs in HEK 293 cells. J Virol Methods. 2011.Google Scholar
  193. 193.
    Yoon JS, Kim SH, Shin MC, Hong SK, Jung YT, Khang IG, et al. Inhibition of herpesvirus-6B RNA replication by short interference RNAs. J Biochem Mol Biol. 2004;37(3):383–5.PubMedCrossRefGoogle Scholar
  194. 194.
    Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA. 2004;101(23):8676–81.PubMedCrossRefGoogle Scholar
  195. 195.
    Sui HY, Zhao GY, Huang JD, Jin DY, Yuen KY, Zheng BJ. Small interfering RNA targeting m2 gene induces effective and long term inhibition of influenza A virus replication. PLoS One. 2009;4(5):e5671.PubMedCrossRefGoogle Scholar
  196. 196.
    Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci USA. 2004;101(23):8682–6.PubMedCrossRefGoogle Scholar
  197. 197.
    Zhiqiang W, Yaowu Y, Fan Y, Jian Y, Yongfeng H, Lina Z, et al. Effective siRNAs inhibit the replication of novel influenza A (H1N1) virus. Antiviral Res. 2010;85(3):559–61.PubMedCrossRefGoogle Scholar
  198. 198.
    Zhou H, Jin M, Yu Z, Xu X, Peng Y, Wu H, et al. Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antiviral Res. 2007;76(2):186–93.PubMedCrossRefGoogle Scholar
  199. 199.
    Fowler T, Bamberg S, Moller P, Klenk HD, Meyer TF, Becker S, et al. Inhibition of Marburg virus protein expression and viral release by RNA interference. J Gen Virol. 2005;86(Pt 4):1181–8.PubMedCrossRefGoogle Scholar
  200. 200.
    Alkhalil A, Strand S, Mucker E, Huggins JW, Jahrling PB, Ibrahim SM. Inhibition of monkeypox virus replication by RNA interference. Virol J. 2009;6:188.PubMedCrossRefGoogle Scholar
  201. 201.
    Yin R, Ding Z, Liu X, Mu L, Cong Y, Stoeger T. Inhibition of Newcastle disease virus replication by RNA interference targeting the matrix protein gene in chicken embryo fibroblasts. J Virol Methods. 2010;167(1):107–11.PubMedCrossRefGoogle Scholar
  202. 202.
    Barik S. Control of nonsegmented negative-strand RNA virus replication by siRNA. Virus Res. 2004;102(1):27–35.PubMedCrossRefGoogle Scholar
  203. 203.
    Sun M, Liu X, Cao S, He Q, Zhou R, Ye J, et al. Inhibition of porcine circovirus type 1 and type 2 production in PK-15 cells by small interfering RNAs targeting the Rep gene. Vet Microbiol. 2007;123(1–3):203–9.PubMedCrossRefGoogle Scholar
  204. 204.
    Liu J, Chen I, Chua H, Du Q, Kwang J. Inhibition of porcine circovirus type 2 replication in mice by RNA interference. Virology. 2006;347(2):422–33.PubMedCrossRefGoogle Scholar
  205. 205.
    Jia H, Ge X, Guo X, Yang H, Yu K, Chen Z, et al. Specific small interfering RNAs-mediated inhibition of replication of porcine encephalomyocarditis virus in BHK-21 cells. Antiviral Res. 2008;79(2):95–104.PubMedCrossRefGoogle Scholar
  206. 206.
    Gitlin L, Stone JK, Andino R. Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches. J Virol. 2005;79(2):1027–35.PubMedCrossRefGoogle Scholar
  207. 207.
    He YX, Hua RH, Zhou YJ, Qiu HJ, Tong GZ. Interference of porcine reproductive and respiratory syndrome virus replication on MARC-145 cells using DNA-based short interfering RNAs. Antiviral Res. 2007;74(2):83–91.PubMedCrossRefGoogle Scholar
  208. 208.
    Israsena N, Supavonwong P, Ratanasetyuth N, Khawplod P, Hemachudha T. Inhibition of rabies virus replication by multiple artificial microRNAs. Antiviral Res. 2009;84(1):76–83.PubMedCrossRefGoogle Scholar
  209. 209.
    Arias CF, Dector MA, Segovia L, Lopez T, Camacho M, Isa P, et al. RNA silencing of rotavirus gene expression. Virus Res. 2004;102(1):43–51.PubMedCrossRefGoogle Scholar
  210. 210.
    Dector MA, Romero P, Lopez S, Arias CF. Rotavirus gene silencing by small interfering RNAs. EMBO Rep. 2002;3(12):1175–80.PubMedCrossRefGoogle Scholar
  211. 211.
    Bitko V, Barik S. An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J Cell Biochem. 2001;80(3):441–54.PubMedCrossRefGoogle Scholar
  212. 212.
    He ML, Zheng B, Peng Y, Peiris JS, Poon LL, Yuen KY, et al. Inhibition of SARS-associated coronavirus infection and replication by RNA interference. JAMA. 2003;290(20):2665–6.PubMedCrossRefGoogle Scholar
  213. 213.
    He ML, Zheng BJ, Chen Y, Wong KL, Huang JD, Lin MC, et al. Development of interfering RNA agents to inhibit SARS-associated coronavirus infection and replication. Hong Kong Med J. 2009;15(3 Suppl 4):28–31.PubMedGoogle Scholar
  214. 214.
    Lu S, Cullen BR. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol. 2004;78(23):12868–76.PubMedCrossRefGoogle Scholar
  215. 215.
    Zheng BJ, Guan Y, Tang Q, Du C, Xie FY, He ML, et al. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus. Antivir Ther. 2004;9(3):365–74.PubMedGoogle Scholar
  216. 216.
    Anthony KG, Bai F, Krishnan MN, Fikrig E, Koski RA. Effective siRNA targeting of the 3′ untranslated region of the West Nile virus genome. Antiviral Res. 2009;82(3):166–8.PubMedCrossRefGoogle Scholar
  217. 217.
    Kumar P, Lee SK, Shankar P, Manjunath N. A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med. 2006;3(4):e96.PubMedCrossRefGoogle Scholar
  218. 218.
    Tirasophon W, Roshorm Y, Panyim S. Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA. Biochem Biophys Res Commun. 2005;334(1):102–7.PubMedCrossRefGoogle Scholar
  219. 219.
    Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327(5962):198–201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical and Biolmolecular EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of BioengineeringUniversity of CaliforniaBerkeleyUSA
  3. 3.Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyUSA

Personalised recommendations