Pharmaceutical Research

, 28:2848 | Cite as

Expression of GFP in the Mitochondrial Compartment Using DQAsome-Mediated Delivery of an Artificial Mini-mitochondrial Genome

  • Diana Lyrawati
  • Alan Trounson
  • David Cram
Research Paper



We describe a novel strategy for expression of GFP in mammalian mitochondria.


The key components of the strategy were an artificially created mitochondrial genome pmtGFP and a DQAsome transfection system.


Using immunofluorescence and a combination of immunohistochemical and molecular based techniques, we show that DQAsomes are capable of delivering the pmtGFP construct to the mitochondrial compartment of the mouse macrophage cell line RAW264.7, albeit at low efficiency (1–5%), resulting in the expression of GFP mRNA and protein. Similar transfection efficiencies were also demonstrated in a range of other mammalian cell lines.


The DQAsome-transfection technique was able to deliver the exogenous DNA into the cellular mitochondria and the pmtGFP was functional. Further optimization of this strategy would provide a flexible and rapid way to generate mutant cells and useful animal models of mitochondrial disease.


DQAsome GFP expression mini-mitochondrial genome mitochondrial gene delivery transfection 



Dr Diana Lyrawati was supported by a Departmental Scholarship provided by the Monash Immunology and Stem Cell Laboratories, formerly, the Centre for Early Human Development, under the Directorship of Professor Alan Trounson. The authors thank Professor Sangkot Marzuki from the Eijkman Institute for Molecular Biology, Jakarta, Indonesia for providing laboratory resources to perform the immunohistochemistry experiments.


  1. 1.
    Costanzo MC, Fox TD. Transformation of yeast by agitation with glass beads. Genetics. 1988;120:667–70.PubMedGoogle Scholar
  2. 2.
    Fox TD, Sanford JC, McMullin TW. Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA. Proc Natl Acad Sci USA. 1988;85:7288–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA. Mitochondrial transformation in yeast by bombardment with microprojectiles. Science. 1988;240:1538–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Collombet JM, Wheeler VC, Vogel F, Coutelle C. Introduction of plasmid DNA into isolated mitochondria by electroporation. A novel approach toward gene correction for mitochondrial disorders. J Biol Chem. 1997;272:5342–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Geromel V, Cao A, Briane D, Vassy J, Rotig A, Rustin P, et al. Mitochondria transfection by oligonucleotides containing a signal peptide and vectorized by cationic liposomes. Antisense Nucleic Acid Drug Dev. 2001;11:175–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Inoki Y, Hakamata Y, Hamamoto T, Kinouchi T, Yamazaki S, Kagawa Y, et al. Proteoliposomes colocalized with endogenous mitochondria in mouse fertilized egg. Biochem Biophys Res Commun. 2000;278:183–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res. 1998;15:334–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Weissig V, D’Souza GG, Torchilin VP. DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J Control Release. 2001;75:401–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Seibel P, Trappe J, Villani G, Klopstock T, Papa S, Reichmann H. Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res. 1995;23:10–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Muratovska A, Lightowlers RN, Taylor RW, Turnbull DM, Smith RA, Wilce JA, et al. Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res. 2001;29:1852–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Flierl A, Jackson C, Cottrell B, Murdock D, Seibel P, Wallace DC. Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol Ther. 2003;7:550–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Bigger B, Tolmachov O, Collombet J-M, Coutelle C. Introduction of chloramphenicol resistance into the modified mouse mitochondrial genome: cloning of unstable sequences by passage through yeast. Anal Biochem. 2000;277:236–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Wheeler VC, Prodromou C, Pearl LH, Williamson R, Coutelle C. Synthesis of a modified gene encoding human ornithine transcarbamylase for expression in mammalian mitochondrial and universal translation systems: a novel approach towards correction of a genetic defect. Gene. 1996;169:251–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Chrzanowska-Lightowlers ZM, Temperley RJ, McGregor A, Bindoff LA, Lightowlers RN. Conversion of a reporter gene for mitochondrial gene expression using iterative mega-prime PCR. Gene. 1999;230:241–7.PubMedCrossRefGoogle Scholar
  15. 15.
    McGregor A, Temperley R, Chrzanowska-Lightowlers ZM, Lightowlers RN. Absence of expression from RNA internalised into electroporated mammalian mitochondria. Mol Genet Genomics. 2001;265:721–9.PubMedCrossRefGoogle Scholar
  16. 16.
    D’Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release. 2003;92:189–97.PubMedCrossRefGoogle Scholar
  17. 17.
    D’Souza GG, Weissig V. Approaches to mitochondrial gene therapy. Curr Gene Ther. 2004;4:317–28.PubMedGoogle Scholar
  18. 18.
    Nakamura Y. Codon usage database, GenBank Release 131.0;. http://wwwkazusaorjp/codon/cgi-bin/showcodoncgi?species=Mitochondrion+Mus+musculus+[gbrod], 2002.
  19. 19.
    Zolotukhin S, Potter M, Hauswirth WW, Guy J, Muzyczka N. A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol. 1996;70:4646–54.PubMedGoogle Scholar
  20. 20.
    Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981;26:167–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Friedrich G, Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991;5:1513–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Hofman F. Immunohistochemistry. Current protocols in immunology, vol. 1, New York: John Wiley and Sons; 1996. sect. 5.8.1–5.8.23.Google Scholar
  23. 23.
    Malik S, Sudoyo H, Marzuki S. Microphotometric analysis of NADH-tetrazolium reductase deficiency in fibroblasts of patients with Leber hereditary optic neuropathy. J Inherit Metab Dis. 2000;23:730–44.PubMedCrossRefGoogle Scholar
  24. 24.
    Towers N, Dixon H, Kellerman M, Linnane A. Biogenesis of mitochondria. 22. The sensitivity of rat liver mitochondria to antibiotics; a phylogenetic difference between a mammalian system and yeast. Arch Biochem Biophys. 1972;151:361–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Margineantu DH, Brown RM, Brown GK, Marcus AH, Capaldi RA. Heterogeneous distribution of pyruvate dehydrogenase in the matrix of mitochondria. Mitochondrion. 2002;1:327–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Elorza B, Elorza MA, Sainz MC, Chantres JR. Comparison of particle size and encapsulation parameters of three liposomal preparations. J Microencapsul. 1993;10:237–48.PubMedCrossRefGoogle Scholar
  27. 27.
    MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991;1061:297–303.PubMedCrossRefGoogle Scholar
  28. 28.
    Weissig V, Lizano C, Ganellin CR, Torchillin VP. DNA binding cationic bolasomes with delocalized charge center A structure-activity relationship study. STP Pharma Sci. 2001;11:91–6.Google Scholar
  29. 29.
    Chan CF, Lin-Shiau SY. Site of action of suramin and reactive blue 2 in preventing neuronal death induced by dequalinium. J Neurosci Res. 2000;62:692–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Chan CF, Lin-Shiau SY. Suramin prevents cerebellar granule cell-death induced by dequalinium. Neurochem Int. 2001;38:135–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Entelis NS, Kolesnikova OA, Martin RP, Tarassov IA. RNA delivery into mitochondria. Adv Drug Deliv Rev. 2001;49:199–215.PubMedCrossRefGoogle Scholar
  32. 32.
    Entelis NS, Kolesnikova OA, Dogan S, Martin RP, Tarassov IA. 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. J Biol Chem. 2001;276:45642–53.PubMedCrossRefGoogle Scholar
  33. 33.
    Entelis NS, Kieffer S, Kolesnikova OA, Martin RP, Tarassov IA. Structural requirements of tRNALys for its import into yeast mitochondria. Proc Natl Acad Sci USA. 1998;95:2838–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Kolesnikova O, Entelis N, Kazakova H, Brandina I, Martin RP, Tarassov I. Targeting of tRNA into yeast and human mitochondria: the role of anticodon nucleotides. Mitochondrion. 2002;2:95–107.PubMedCrossRefGoogle Scholar
  35. 35.
    Koulintchenko M, Konstantinov Y, Dietrich A. Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J. 2003;22:1245–54.PubMedCrossRefGoogle Scholar
  36. 36.
    Kajander OA, Rovio AT, Majamaa K, Poulton J, Spelbrink JN, Holt IJ, et al. Human mtDNA sublimons resemble rearranged mitochondrial genome found in pathological states. Hum Mol Genet. 2000;9:2821–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory of Pharmacy, Faculty of MedicineBrawijaya UniversityMalangIndonesia
  2. 2.California Institute for Regenerative MedicineSan FranciscoUSA
  3. 3.Monash Immunology and Stem Cell LaboratoriesMonash UniversityMelbourneAustralia

Personalised recommendations