Pharmaceutical Research

, 28:2745 | Cite as

Quantitative Glucose and ATP Sensing in Mammalian Cells

  • Dania C. Liemburg-Apers
  • Hiromi Imamura
  • Marleen Forkink
  • Marco Nooteboom
  • Herman G. Swarts
  • Roland Brock
  • Jan A. M. Smeitink
  • Peter H. G. M. Willems
  • Werner J. H. Koopman
Expert Review


The functioning and survival of mammalian cells requires an active energy metabolism. Metabolic dysfunction plays an important role in many human diseases, including diabetes, cancer, inherited mitochondrial disorders, and metabolic syndrome. The monosaccharide glucose constitutes a key source of cellular energy. Following its import across the plasma membrane, glucose is converted into pyruvate by the glycolysis pathway. Pyruvate oxidation supplies substrates for the ATP-generating mitochondrial oxidative phosphorylation (OXPHOS) system. To gain cell-biochemical knowledge about the operation and regulation of the cellular energy metabolism in the healthy and diseased state, quantitative knowledge is required about (changes in) metabolite concentrations under (non) steady-state conditions. This information can, for instance, be used to construct more realistic in silico models of cell metabolism, which facilitates understanding the consequences of metabolic dysfunction as well as on- and off-target effects of mitochondrial drugs. Here we review the current state-of-the-art live-cell quantification of two key cellular metabolites, glucose and ATP, using protein-based sensors. The latter apply the principle of FRET (fluorescence resonance energy transfer) and allow measurements in different cell compartments by fluorescence microscopy. We further summarize the properties and applications of the FRET-based sensors, their calibration, pitfalls, and future perspectives.


ATeam fibroblast GLUT systems biology 





fluorescence acceptor molecule


acetyl-coenzyme A


adenoside diphosphate


adenosine monophosphate


AMP-activated protein kinase


adenine nucleotide translocator


adenoside triphosphate


fluorescence donor molecule




enhanced cyan fluorescent protein


endoplasmic reticulum


enhanced yellow fluorescent protein


carbonyl cyanide-p-trifluoromethoxyphenylhydrazone


fluorescence resonance energy transfer


fractional saturation




green fluorescent protein


glucose galactose-binding protein




glucose transporter






lactate dehydrogenase


orange fluorescent protein


oxidative phosphorylation


periplasmic binding protein


pyruvate dehydrogenase




pyruvate kinase


protein kinase C


plasma membrane


pentose phosphate pathway


reactive oxygen species


sodium-dependent glucose cotransporters


streptolysin O


signal-to-noise ratio


tricarboxylic acid


phorbol 12-myristate 13-acetate


voltage-dependent anion channel


  1. 1.
    Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 2010;298:E141–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Bittner CX, Loaiza A, Ruminot I, Larenas V, Sotelo-Hitschfeld T, Gutiérrez R, Córdova A, Valdebenito1 R, Frommer WB, Barros LF. High resolution measurement of the glycolytic rate. Front Neuroenergetics. 2010;15(2). pii: 26.Google Scholar
  3. 3.
    Blodgett DM, De Zutter JK, Levine KB, Karim P, Carruthers A. Structural Basis of GLUT1 Inhibition by Cytoplasmic ATP. J Gen Physiol. 2007;130(2):157–68.PubMedCrossRefGoogle Scholar
  4. 4.
    Klip A, Tsakiridis T, Marette A, Ortiz PA. Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J. 1994;8(1):43–53.PubMedGoogle Scholar
  5. 5.
    John SA, Ottolia M, Weiss JN, Ribalet B. Dynamic modulation of intracellular glucose imaged in single cells using a FRET-based glucose nanosensor. Pflugers Arch. 2008;456(2):307–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Gouyon F, Caillaud L, Carriere V, Klein C, Dalet V, Citadelle D, et al. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice. J Physiol. 2003;552(Pt 3):823–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Tobin V, Le Gall M, Fioramonti X, Stolarczyk E, Blazquez AG, Klein C, et al. Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice. J Physiol. 2003;552(Pt 3):823–32.Google Scholar
  9. 9.
    Fehr M, Takanaga H, Ehrhardt DW, Frommer WB. Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors. Mol Cell Biol. 2005;25(24):11102–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Rencurel F, Waeber G, Antoine B, Rocchiccioli F, Maulard P, Girard J, et al. Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochem J. 1996;314(Pt 3):903–9.PubMedGoogle Scholar
  11. 11.
    Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab. 2008;295(2):E242–253.PubMedCrossRefGoogle Scholar
  12. 12.
    Mohan S, Sheena A, Poulose N, Anilkumar G. Molecular dynamics simulation studies of GLUT4: substrate-free and substrate-induced dynamics and ATP-mediated glucose transport inhibition. PLoS One. 2010;5(12):e14217.PubMedCrossRefGoogle Scholar
  13. 13.
    Robey RB, Hay N. Mitochondrial hexokinases: guardians of the mitochondria. Cell Cycle. 2005;4(5):654–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Koopman WJH, Nijtmans LG, Dieteren CEJ, Roestenberg P, Valsecchi F, Smeitink JAM, et al. Mammalian mitochondrial complex I: Biogenesis, regulation and reactive oxygen species generation. Antioxid Redox Signal. 2010;12:1431–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.PubMedCrossRefGoogle Scholar
  17. 17.
    Griffiths EJ, Rutter GA. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta. 2009;1787(11):1324–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB. In vivo imaging of the dynamics of glucose uptake in the cytosol of cos-7 cells by fluorescent nanosensors. J Biol Chem. 2003;278(21):19127–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Tsuboi T, Lippiat JD, Ashcroft FM, Rutter GA. ATP-dependent interaction of the cytosolic domains of the inwardly rectifying K+ channel Kir6.2 revealed by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 2004;101(1):76–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Deuschle K, Okumoto S, Mehr F, Looger L, Kozhukh L, Frommer WB. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci. 2005;14(9):2304–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Deuschle K, Fehr M, Hilpert M, Lager I, Lalonde S, Looger LL, et al. Genetically encoded sensors for metabolites. Cytometry A. 2005;64(1):3–9.PubMedGoogle Scholar
  22. 22.
    Deuschle K, Chaudhuri B, Okumoto S, Lager I, Lalonde S, Frommer WB. Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell. 2006;18(9):2314–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. New Phytol. 2008;180(2):271–95.PubMedCrossRefGoogle Scholar
  24. 24.
    Berg J, Hung YP, Yellen G. A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat Methods. 2009;6(2):161–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A. 2009;106(37):15651–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Lakowicz JR. Principles of fluorescence spectroscopy, chapter 13. 3rd ed. New York: Springer; 2006. p. 445–6.CrossRefGoogle Scholar
  27. 27.
    Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A. 2004;101(29):10554–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem. 2001;276(31):29188–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Takanaga H, Chaudhuri B, Frommer WB. GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta. 2008;1778(4):1091–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 2002;20(1):87–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Takanaga H, Frommer WB. Facilitative plasma membrane transporters function during ER transit. FASEB J. 2010;24(8):2849–58.PubMedCrossRefGoogle Scholar
  32. 32.
    Nagai T, Sawano A, Park ES, Miyawaki A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA. 2001;98:3197–202.PubMedCrossRefGoogle Scholar
  33. 33.
    Yagi H, Kajiwara N, Tanaka H, Tsukihara T, Kato-Yamada Y, Yoshida M, et al. Structures of the thermophilic F1-ATPase epsilon subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1. Proc Natl Acad Sci USA. 2007;104(27):11233–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Willemse M, Janssen E, de Lange F, Wieringa B, Fransen J. ATP and FRET—a cautionary note. Nat Biotechnol. 2007;25(2):170–2.PubMedCrossRefGoogle Scholar
  35. 35.
    Borst JW, Willemse M, Slijkhuis R, van der Krogt G, Laptenok SP, Jalink K, et al. ATP changes the fluorescence lifetime of cyan fluorescent protein via an interaction with His148. PLoS One. 2010;5(11):e13862.PubMedCrossRefGoogle Scholar
  36. 36.
    Zacharias DA, Violin JD, Newton AC, Tsien RY. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002;296(5569):913–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Kotera I, Iwasaki T, Imamura H, Noji H, Nagai T. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators. ACS Chem Biol. 2010;5(2):215–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Nakano M, Imamura H, Nagai T, Noji H. Ca2+ regulation of mitochondrial ATP synthesis visualized at the single cell level. ACS Chem Biol. 2011 (in press).Google Scholar
  39. 39.
    Tsien RY, Rink TJ, Poenie M. Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium. 1985;6(1–2):145–57.PubMedCrossRefGoogle Scholar
  40. 40.
    Dieteren CEJ, Willems PHGM, Vogel RO, Swarts HG, Fransen J, Roepman R, et al. Subunits of mitochondrial complex I exist as part of matrix- and membrane-associated subcomplexes in living cells. J Biol Chem. 2008;283(50):34753–61.PubMedCrossRefGoogle Scholar
  41. 41.
    Wallace KB. Mitochondrial off targets of drug therapy. Tr Pharm Sci. 2010;29:361–6.CrossRefGoogle Scholar
  42. 42.
    Koopman WJH, Distelmaier F, Esseling JJ, Smeitink JAM, Willems PHGM. Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling. Methods. 2008;46:304–11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dania C. Liemburg-Apers
    • 1
    • 2
    • 3
  • Hiromi Imamura
    • 4
  • Marleen Forkink
    • 1
  • Marco Nooteboom
    • 1
    • 2
    • 3
  • Herman G. Swarts
    • 1
  • Roland Brock
    • 1
  • Jan A. M. Smeitink
    • 2
    • 3
  • Peter H. G. M. Willems
    • 1
    • 3
  • Werner J. H. Koopman
    • 1
    • 3
  1. 1.Department of Biochemistry (286) Nijmegen Centre for Molecular Life SciencesRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  2. 2.Department of Pediatrics Nijmegen Centre for Mitochondrial DisordersRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  3. 3.Centre for Systems Biology and BioenergeticsRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  4. 4.Kyoto UniversityKyotoJapan

Personalised recommendations