Advertisement

Pharmaceutical Research

, Volume 28, Issue 10, pp 2575–2588 | Cite as

Potential of Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine in Facilitating Enhanced Delivery of Active Drug to Interior Sites of Tumors: A Two-Tier Monolayer In Vitro Study

  • Yasuhiro Tsume
  • John M. Hilfinger
  • Gordon L. Amidon
Research Paper

ABSTRACT

Purpose

To evaluate the advantages of amino acid/dipeptide monoester prodrugs for cancer treatments by assessing the uptake and cytotoxic effects of floxuridine prodrugs in a secondary cancer cell monolayer following permeation across a primary cancer cell monolayer.

Methods

The first Capan-2 monolayer was grown on membrane transwell inserts; the second monolayer was grown at the bottom of a plate. The permeation of floxuridine and its prodrugs across the first monolayer and the uptake and cell proliferation assay on secondary layer were sequentially determined.

Results

All floxuridine prodrugs exhibited greater permeation across the first Capan-2 monolayer than the parent drug. The correlation between uptake and growth inhibition in the second monolayer with intact prodrug permeating the first monolayer suggests that permeability and enzymatic stability are essential for sustained action of prodrugs in deeper layers of tumors. The correlation of uptake and growth inhibition were vastly superior for dipeptide prodrugs to those obtained with mono amino acid prodrugs.

Conclusions

Although a tentative general overall correlation between intact prodrug and uptake or cytotoxic action was obtained, it appears that a mixture of floxuridine prodrugs with varying beneficial characteristics may be more effective in treating tumors.

KEY WORDS

antiproliferative action Capan-2 pancreatic cancer cells in vitro tumor model mono amino acid and dipeptide monoester floxuridine prodrugs permeation and bioactivation prodrug cocktail two-tier Capan-2 monolayer two-tier Capan-2 pancreatic cancer monolayer 

Notes

ACKNOWLEDGMENTS

We thank Dr. Wei Shen for his expertise with prodrug purification. This work was supported by grants NIGMD-2R01GM037188.

REFERENCES

  1. 1.
    Bookman MA. Biologic therapies for gynecologic cancer. Curr Opin Oncol. 1995;7:478–84.PubMedCrossRefGoogle Scholar
  2. 2.
    Gray J, Frith C, Parker J. In vivo enhancement of chemotherapy with static electric or magnetic fields. Bioelectromagnetics. 2000;21:575–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Kamstock D, Guth A, Elmslie R, Kurzman I, Liggitt D, Coro L, et al. Liposome-DNA complexes infused intravenously inhibit tumor angiogenesis and elicit antitumor activity in dogs with soft tissue sarcoma. Cancer Gene Ther. 2006;13:306–17.PubMedCrossRefGoogle Scholar
  4. 4.
    Keler T, Khan S, Sorof S. Liver fatty acid binding protein and mitogenesis in transfected hepatoma cells. Adv Exp Med Biol. 1997;400A:517–24.PubMedGoogle Scholar
  5. 5.
    Kratz F, Mansour A, Soltau J, Warnecke A, Fichtner I, Unger C, et al. Development of albumin-binding doxorubicin prodrugs that are cleaved by prostate-specific antigen. Arch Pharm (Weinheim). 2005;338:462–72.CrossRefGoogle Scholar
  6. 6.
    Kullberg M, Mann K, Owens JL. Improved drug delivery to cancer cells: a method using magnetoliposomes that target epidermal growth factor receptors. Med Hypotheses. 2005;64:468–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Mittal S, Song X, Vig BS, Landowski CP, Kim I, Hilfinger JM, et al. Prolidase, a potential enzyme target for melanoma: design of proline-containing dipeptide-like prodrugs. Mol Pharm. 2005;2:37–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Wagner E, Kircheis R, Walker GF. Targeted nucleic acid delivery into tumors: new avenues for cancer therapy. Biomed Pharmacother. 2004;58:152–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Shimma N, Umeda I, Arasaki M, Murasaki C, Masubuchi K, Kohchi Y, et al. The design and synthesis of a new tumor-selective fluoropyrimidine carbamate, capecitabine. Bioorg Med Chem. 2000;8:1697–706.PubMedCrossRefGoogle Scholar
  10. 10.
    Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumors by enzymes concentrated in human liver and cancer tissue. Eur J Cancer. 1998;34:1274–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Pinedo HM, Peters GF. Fluorouracil: biochemistry and pharmacology. J Clin Oncol. 1988;6:1653–64.PubMedGoogle Scholar
  12. 12.
    Grem JL, Harold N, Shapiro J, Bi DQ, Quinn MG, Zentko S, et al. Phase I and pharmacokinetic trial of weekly oral fluorouracil given with eniluracil and low-dose leucovorin to patients with solid tumors. J Clin Oncol. 2000;18:3952–63.PubMedGoogle Scholar
  13. 13.
    Laskin JD, Evans RM, Slocum HK, Burke D, Hakala MT. Basis for natural variation in sensitivity to 5-fluorouracil in mouse and human cells in culture. Cancer Res. 1979;39:383–90.PubMedGoogle Scholar
  14. 14.
    Tsume Y, Hilfinger JM, Amidon GL. Enhanced cancer cell growth inhibition by dipeptide prodrugs of floxuridine: increased transporter affinity and metabolic stability. Mol Pharm. 2008;5:717–27.PubMedCrossRefGoogle Scholar
  15. 15.
    Burris 3rd HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.PubMedGoogle Scholar
  16. 16.
    Barton-Burke M. Gemcitabine: a pharmacologic and clinical overview. Cancer Nurs. 1999;22:176–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Heinemann V, Hertel LW, Grindey GB, Plunkett W. Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1988;48:4024–31.PubMedGoogle Scholar
  18. 18.
    Plunkett W, Huang P, Gandhi V. Preclinical characteristics of gemcitabine. Anticancer Drugs. 1995;6 Suppl 6:7–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 1995;22:3–10.PubMedGoogle Scholar
  20. 20.
    Tsume Y, Vig BS, Sun J, Landowski CP, Hilfinger JM, Ramachandran C, et al. Enhanced absorption and growth inhibition with amino acid monoester prodrugs of floxuridine by targeting hPEPT1 transporters. Molecules. 2008;13:1441–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Landowski CP, Vig BS, Song X, Amidon GL. Targeted delivery to PEPT1-overexpressing cells: acidic, basic, and secondary floxuridine amino acid ester prodrugs. Mol Cancer Ther. 2005;4:659–67.PubMedCrossRefGoogle Scholar
  22. 22.
    Song X, Lorenzi PL, Landowski CP, Vig BS, Hilfinger JM, Amidon GL. Amino acid ester prodrugs of the anticancer agent gemcitabine: synthesis, bioconversion, metabolic bioevasion, and hPEPT1-mediated transport. Mol Pharm. 2005;2:157–67.PubMedCrossRefGoogle Scholar
  23. 23.
    Behrens I, Kamm W, Dantzig AH, Kissel T. Variation of peptide transporter (PepT1 and HPT1) expression in Caco-2 cells as a function of cell origin. J Pharm Sci. 2004;93:1743–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Geromichalos GD, Trafalis DT, Katsoulos GA, Papageorgiou A, Dalezis P, Triandafillidis EB, et al. Synergistic interaction between a mixed ligand copper (II) chelate complex and two anticancer agents in T47D human breast cancer cells in vitro. J BUON. 2006;11:469–76.PubMedGoogle Scholar
  25. 25.
    Ohbayashi M, Yasuda M, Kawakami I, Kohyama N, Kobayashi Y, Yamamoto T. Effect of interleukins response to ECM-induced acquisition of drug resistance in MCF-7 cells. Exp Oncol. 2008;30:276–82.PubMedGoogle Scholar
  26. 26.
    Padron JM, van der Wilt CL, Smid K, Smitskamp-Wilms E, Backus HH, Pizao PE, et al. The multilayered postconfluent cell culture as a model for drug screening. Crit Rev Oncol Hematol. 2000;36:141–57.PubMedCrossRefGoogle Scholar
  27. 27.
    Rubas W, Jezyk N, Grass GM. Mechanism of dextran transport across rabbit intestinal tissue and a human colon cell-line (CACO-2). J Drug Target. 1995;3:15–21.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, et al. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood-brain barrier. Drug Metab Dispos. 2009;37:1251–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Au JL, Jang SH, Zheng J, Chen CT, Song S, Hu L, et al. Determinants of drug delivery and transport to solid tumors. J Control Release. 2001;74:31–46.PubMedCrossRefGoogle Scholar
  30. 30.
    Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6:583–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Rizvi I, Celli JP, Evans CL, Abu-Yousif AO, Muzikansky A, Pogue BW, et al. Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer. Cancer Res. 2010;70:9319–28.PubMedCrossRefGoogle Scholar
  32. 32.
    Ohmori T, Yang JL, Price JO, Arteaga CL. Blockade of tumor cell transforming growth factor-betas enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Exp Cell Res. 1998;245:350–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;10:241–53.PubMedCrossRefGoogle Scholar
  34. 34.
    del Carmen MG, Rizvi I, Chang Y, Moor AC, Oliva E, Sherwood M, et al. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J Natl Cancer Inst. 2005;97:1516–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Molpus KL, Kato D, Hamblin MR, Lilge L, Bamberg M, Hasan T. Intraperitoneal photodynamic therapy of human epithelial ovarian carcinomatosis in a xenograft murine model. Cancer Res. 1996;56:1075–82.PubMedGoogle Scholar
  36. 36.
    Finlay JC, Mitra S, Patterson MS, Foster TH. Photobleaching kinetics of Photofrin in vivo and in multicell tumour spheroids indicate two simultaneous bleaching mechanisms. Phys Med Biol. 2004;49:4837–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? Int J Radiat Biol. 2007;83:849–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130:601–10.PubMedCrossRefGoogle Scholar
  39. 39.
    Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, et al. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm. 2008;5:849–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen. 2004;9:273–85.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim JB. Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol. 2005;15:365–77.PubMedCrossRefGoogle Scholar
  42. 42.
    Celli JP, Rizvi I, Evans CL, Abu-Yousif AO, Hasan T. Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model. J Biomed Opt. 2010;15:051603.PubMedCrossRefGoogle Scholar
  43. 43.
    Debnath J, Brugge JS. Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer. 2005;5:675–88.PubMedCrossRefGoogle Scholar
  44. 44.
    Monazzam A, Josephsson R, Blomqvist C, Carlsson J, Langstrom B, Bergstrom M. Application of the multicellular tumour spheroid model to screen PET tracers for analysis of early response of chemotherapy in breast cancer. Breast Cancer Res. 2007;9:R45.PubMedCrossRefGoogle Scholar
  45. 45.
    Landowski CP, Song X, Lorenzi PL, Hilfinger JM, Amidon GL. Floxuridine amino acid ester prodrugs: enhancing Caco-2 permeability and resistance to glycosidic bond metabolism. Pharm Res. 2005;22:1510–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Vig BS, Lorenzi PJ, Mittal S, Landowski CP, Shin HC, Mosberg HI, et al. Amino acid ester prodrugs of floxuridine: synthesis and effects of structure, stereochemistry, and site of esterification on the rate of hydrolysis. Pharm Res. 2003;20:1381–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Beauchamp LM, Krenitsky TA. Acyclovir prodrugs: the road to valacyclovir. Drugs Future. 1993;18:619–28.Google Scholar
  48. 48.
    Beauchamp LM, Orr GF, De Miranda P, Burnette TC, Krenitsky TA. Amino acid ester prodrugs of acyclovir. Antiviral Chem Chemother. 1992;3:157–64.Google Scholar
  49. 49.
    Maag H. Ganciclovir pro-drugs: Synthesis and pre-clinical development of valganciclovir (Valcyte™)., AAPS Annual Meeting, Toronto, Canada., 2002.Google Scholar
  50. 50.
    Purifoy DJ, Beauchamp LM, de Miranda P, Ertl P, Lacey S, Roberts G, et al. Review of research leading to new anti-herpesvirus agents in clinical development: valaciclovir hydrochloride (256U, the L-valyl ester of acyclovir) and 882C, a specific agent for varicella zoster virus. J Med Virol. 1993;Suppl 1:139–45.PubMedCrossRefGoogle Scholar
  51. 51.
    Jung D, Dorr A. Single-dose pharmacokinetics of valganciclovir in HIV- and CMV-seropositive subjects. J Clin Pharmacol. 1999;39:800–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Pescovitz MD, Rabkin J, Merion RM, Paya CV, Pirsch J, Freeman RB, et al. Valganciclovir results in improved oral absorption of ganciclovir in liver transplant recipients. Antimicrob Agents Chemother. 2000;44:2811–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Ganapathy ME, Huang W, Wang H, Ganapathy V, Leibach FH. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem Biophys Res Commun. 1998;246:470–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Han H, de Vrueh RL, Rhie JK, Covitz KM, Smith PL, Lee CP, et al. 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res. 1998;15:1154–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Han HK, Oh DM, Amidon GL. Cellular uptake mechanism of amino acid ester prodrugs in Caco-2/hPEPT1 cells overexpressing a human peptide transporter. Pharm Res. 1998;15:1382–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Sugawara M, Huang W, Fei YJ, Leibach FH, Ganapathy V, Ganapathy ME. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J Pharm Sci. 2000;89:781–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Anand BS, Patel J, Mitra AK. Interactions of the dipeptide ester prodrugs of acyclovir with the intestinal oligopeptide transporter: competitive inhibition of glycylsarcosine transport in human intestinal cell line-Caco-2. J Pharmacol Exp Ther. 2003;304:781–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Eriksson AH, Elm PL, Begtrup M, Nielsen R, Steffansen B, Brodin B. hPEPT1 affinity and translocation of selected Gln-Sar and Glu-Sar dipeptide derivatives. Mol Pharm. 2005;2:242–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Friedrichsen GM, Chen W, Begtrup M, Lee CP, Smith PL, Borchardt RT. Synthesis of analogs of L-valacyclovir and determination of their substrate activity for the oligopeptide transporter in Caco-2 cells. Eur J Pharm Sci. 2002;16:1–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Meredith D, Temple CS, Guha N, Sword CJ, Boyd CA, Collier ID, et al. Modified amino acids and peptides as substrates for the intestinal peptide transporter PepT1. Eur J Biochem. 2000;267:3723–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Nielsen CU, Andersen R, Brodin B, Frokjaer S, Taub ME, Steffansen B. Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity for and transport via hPepT1 in the human intestinal Caco-2 cell line. J Control Release. 2001;76:129–38.PubMedCrossRefGoogle Scholar
  62. 62.
    Vabeno J, Lejon T, Nielsen CU, Steffansen B, Chen W, Ouyang H, et al. Phe-Gly dipeptidomimetics designed for the di-/tripeptide transporters PEPT1 and PEPT2: synthesis and biological investigations. J Med Chem. 2004;47:1060–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Lorenzi PL, Landowski CP, Song X, Borysko KZ, Breitenbach JM, Kim JS, et al. Amino acid ester prodrugs of 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole enhance metabolic stability in vitro and in vivo. J Pharmacol Exp Ther. 2005;314:883–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Song X, Vig BS, Lorenzi PL, Drach JC, Townsend LB, Amidon GL. Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole as potential substrates of hPEPT1 transporter. J Med Chem. 2005;48:1274–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Goolcharran C, Borchardt RT. Kinetics of diketopiperazine formation using model peptides. J Pharm Sci. 1998;87:283–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Larsen SW, Ankersen M, Larsen C. Kinetics of degradation and oil solubility of ester prodrugs of a model dipeptide (Gly-Phe). Eur J Pharm Sci. 2004;22:399–408.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yasuhiro Tsume
    • 1
  • John M. Hilfinger
    • 2
  • Gordon L. Amidon
    • 1
  1. 1.Department of Pharmaceutical ScienceUniversity of MichiganAnn ArborUSA
  2. 2.TSRL, Inc.Ann ArborUSA

Personalised recommendations