Advertisement

Pharmaceutical Research

, Volume 28, Issue 9, pp 2311–2326 | Cite as

Compositional Analysis of Low Quantities of Phase Separation in Hot-Melt-Extruded Solid Dispersions: A Combined Atomic Force Microscopy, Photothermal Fourier-Transform Infrared Microspectroscopy, and Localised Thermal Analysis Approach

  • Sheng Qi
  • Peter Belton
  • Kathrin Nollenberger
  • Andreas Gryczke
  • Duncan Q. M. Craig
Research Paper

ABSTRACT

Purpose

To characterise phase separations in aged hot-melt-extruded solid dispersions at a micron to submicron scale.

Methods

Hot-melt-extruded felodipine and Eudragit® E PO systems at a range of compositions were studied after a standard period of aging to allow phase separation to occur. The samples were characterised using combined nano-thermal analysis, photothermal FTIR microspectroscopy coupled with pulsed force mode AFM as a novel characterisation approach.

Result

Crystalline felodipine presents in all formulations with drug loadings from 10–70% (w/w). In formulations with high drug loadings (50 and 70%), amorphous felodipine co-exists with crystalline forms, and higher drug concentration is observed in the centre compared to the outer surface of the extrudates. Drug crystal dimensions in extrudates with low drug loadings (10–30%) are small, in the micron to submicron range. We propose that uneven drug distribution is principally caused by processing-associated factors such as expansion of extrudates during extrusion.

Conclusions

We have demonstrated that the novel combined approach allows site-specific characterisation of the extruded systems and that drug distribution may be uneven across the extrudates, with concomitant implications for understanding stability and drug release behaviour.

KEY WORDS

hot-melt-extruded solid dispersion phase separation photothermal FTIR microspectroscopy pulsed force mode atomic force microscopy supersaturation 

Notes

ACKNOWLEDGMENTS

The authors would like to thank Dr. Jonathon Moffat and Prof. Mike Reading for their assistance on the use of PT-FTIR microspectroscopy.

Supplementary material

11095_2011_461_MOESM1_ESM.doc (4.6 mb)
Suppoting data (DOC 4760 kb)

REFERENCES

  1. 1.
    Breitenbach J. Melt extrusion: from process to drug delivery technology. Euro J Pharm Biopharm. 2002;54(2):107–17.CrossRefGoogle Scholar
  2. 2.
    Miller DA, McConville JT, Yang W, Williams III RO, McGinity JW. Hot-melt extrusion for enhanced delivery of drug particles. J Pharm Sci. 2006;96(2):361–76.CrossRefGoogle Scholar
  3. 3.
    Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2007;33(9):909–26.PubMedCrossRefGoogle Scholar
  4. 4.
    Mackellar AJ, Buckton G, Newton JM, Chowdhry BZ, Orr CA. The controlled crystallisation of a model powder: 1. The effects of altering the stirring rate and the supersaturation profile, and the incorporation of a surfactant (poloxamer 188). Int J Pharm. 1994;112(1):65–78.CrossRefGoogle Scholar
  5. 5.
    Laarhoven JAH, Kruft MAB, Vromans H. Effect of supersaturation and crystallization phenomena on the release properties of a controlled release device based on EVA copolymer. J Control Release. 2002;82(2–3):309–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Qi S, Belton P, Nollenberger K, Clayden N, Reading M, Craig DQM. Novel characterisation of phase separation in hot melt extruded solid dispersions: a thermal, microscopic and NMR relaxometry study. Pharm Res. 2010;27:1869–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Harding L, Qi S, Hill G, Reading M, Craig DQM. The development of microthermal analysis and photothermal microspectroscopy as novel approaches to drug–excipient compatibility studies. Int J Pharm. 2008;354(1–2):149–57.PubMedCrossRefGoogle Scholar
  8. 8.
    Dai X, Moffat JG, Mayes AG, Reading M, Craig DQM, Belton PS, et al. Thermal probe based analytical microscopy: thermal analysis and photothermal fourier-transform infrared microspectroscopy together with thermally assisted nanosampling coupled with capillary electrophoresis. Analy Chem. 2009;81(16):6612–9.CrossRefGoogle Scholar
  9. 9.
    Moffat JG, Mayes AG, Belton PS, Craig DQM, Reading M. Compositional analysis of metal chelating materials using near-field photothermal fourier transform infrared microspectroscopy. Analy Chem. 2010;82(1):91–7.CrossRefGoogle Scholar
  10. 10.
    Qi S, Gryczke A, Belton P, Craig DQM. Characterisation of solid dispersions of paracetamol and EUDRAGIT® E prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis. Int J Pharm. 2008;354(1–2):158–67.PubMedCrossRefGoogle Scholar
  11. 11.
    Hammiche A, Bozec L, Pollock HM, German M, Reading M. Progress in near-field photothermal Infra-red microspectroscopy. J Microscopy. 2004;213(2):129–34.CrossRefGoogle Scholar
  12. 12.
    Lou B, Boström D, Velaga SP. Polymorph control of felodipine form II in an attempted cocrystallization. Cryst Growth Des. 2009;9(3):1253–7.CrossRefGoogle Scholar
  13. 13.
    Knoon H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95(12):2692–705.CrossRefGoogle Scholar
  14. 14.
    Rollinger JM, Burger A. Polymorphism of racemic felodipine and the unusual series of solid solutions in the binary system of its enantiomers. J Pharm Sci. 2001;90(7):949–59.PubMedCrossRefGoogle Scholar
  15. 15.
    Tang XC, Pikal MJ, Taylor LS. A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharm Res. 2002;19(4):477–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Chamarthy SP, Pinal R. The nature of crystal disorder in milled pharmaceutical materials. Colloid Surface A. 2008;331(1–2):68–75.CrossRefGoogle Scholar
  17. 17.
    Feng T, Carvajal MT, Pinal R. Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of Griseofulvin. J Pharm Sc. 2008;97:3207–21.CrossRefGoogle Scholar
  18. 18.
    Wildfong PLD, Hancock BC, Moore MD, Morri KR. Towards an understanding of the structurally based potential for mechanically activated disordering of small molecule organic crystals. J Pharm Sci. 2006;95:2645–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Bates S, Zografi G, Engers D, Morris K, Crowley K, Newman A. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm Res. 2006;23:2333–49.PubMedCrossRefGoogle Scholar
  20. 20.
    Rumondor A, Stanford L, Taylor L. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res. 2009;26(12):2599–606.PubMedCrossRefGoogle Scholar
  21. 21.
    Tang XC, Pikal MJ, Taylor LS. A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharm Res. 2002;19(4):447–83.Google Scholar
  22. 22.
    Vasanthavada M, Tong WQ, Joshi Y, Kislalioglu MS. Phase behaviour of amorphous molecular dispersions II: role of hydrogen bonding in solid solubility and phase separation kinetics. Pharm Res. 2004;22(3):440–8.CrossRefGoogle Scholar
  23. 23.
    Rosa-Zeiser A, Weilandt E, Weilandt H, Marti O. The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas Sci Technol. 1997;8(11):1333–8.CrossRefGoogle Scholar
  24. 24.
    Marti O, Stifter T, Waschipky H, Quintus M, Hild S. Scanning probe microscopy of heterogeneous polymers, colloids surf. A. 1999;154(1–2):65–73.Google Scholar
  25. 25.
    Krotil HU, Stifter T, Waschipky H, Weishaupt K, Hild S, Marti O. Pulsed force mode: a new method for the investigation of surface properties. Surf Interface Anal. 1999;27:336–40.CrossRefGoogle Scholar
  26. 26.
    Miyatani T, Okamoto S, Rosa A, Marti O, Fujihira M. Surface charge mapping of solid surfaces in water by pulsed-force-mode atomic force microscopy. Appl Phys A. 1998;66:S349–52.CrossRefGoogle Scholar
  27. 27.
    Miyatani T, Horii M, Rosa A, Fujihira M, Marti O. Mapping of electrical double-layer force between tip and sample surfaces in water with pulsed-force-mode atomic force microscopy. O Appl Phys Lett. 1997;71:2632–4.CrossRefGoogle Scholar
  28. 28.
    Rezende CA, Lee LT, Galembeck F. Surface mechanical properties of thin polymer films investigated by AFM in pulsed force mode. Langmuir. 2009;25(17):9938–46.PubMedCrossRefGoogle Scholar
  29. 29.
    Grandy DB, Hourston DJ, Price DM, Reading M, Silva GG, Song M, et al. Microthermal characterization of segmented polyurethane elastomers and a polystyrene-poly(methyl methacrylate) polymer blend using variable-temperature pulsed force mode atomic force microscopy. Macromolecules. 2000;33(25):9348–59.CrossRefGoogle Scholar
  30. 30.
    Zhang H, Mullen K, De Feyter S. Pulsed-force-mode AFM studies of polyphenylene dendrimers on self-assembled monolayers. J Phys Chem C. 2007;111(23):8142–4.CrossRefGoogle Scholar
  31. 31.
    Deng KQ, Winnik MA, Yang N, Jiang ZH, Yaneff PV, Ryntz RA. Characterizing interfacial structure of TPO/CPO/TPO adhesive joints by PFM-AFM and SEM. Polymer. 2009;50(14):3225–33.CrossRefGoogle Scholar
  32. 32.
    Zhu M, Akari S, Mohwald H. Detection of single PSS polymers on rough surface by pulsed-force-mode scanning force microscopy. Nanoletters. 2001;1:569–73.Google Scholar
  33. 33.
    Dai X, Reading M, Craig DQM. Mapping amorphous material on a partially crystalline surface: nanothermal analysis for simultaneous characterisation and imaging of lactose compacts. J Pharm Sci. 2009;98(4):1499–510.PubMedCrossRefGoogle Scholar
  34. 34.
    Hammiche A, Bozec L, Pollock HM, German M, Reading M. Progress in near-field photothermal infra-red microspectroscopy. J Microscopy. 2004;213(2):129–34.CrossRefGoogle Scholar
  35. 35.
    Boskey AL, Posner AS. Formation of hydroxyapatite at low supersaturation. J Phys Chem. 1976;80(1):40–5.CrossRefGoogle Scholar
  36. 36.
    Schlomach J, Quarch K, Kind M. Investigation of precipitation of calcium carbonate at high supersaturations. Chem Eng Technol. 2006;29(2):215–20.CrossRefGoogle Scholar
  37. 37.
    Mullin JM. Crystallization. 4th ed. Oxford: Elsevier Butterworth-Heinemann; 2001.Google Scholar
  38. 38.
    Bruce C, Fegely KA, Rajabi-Siahboomi AR, McGinity JW. Crystal growth formation in melt extrudates. Int J Pharm. 2007;341(1–2):162–72.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sheng Qi
    • 1
  • Peter Belton
    • 2
  • Kathrin Nollenberger
    • 3
  • Andreas Gryczke
    • 3
  • Duncan Q. M. Craig
    • 1
  1. 1.School of PharmacyUniversity of East AngliaNorwichUK
  2. 2.School of ChemistryUniversity of East AngliaNorwichUK
  3. 3.Evonik Röhm GmbHDarmstadtGermany

Personalised recommendations