Pharmaceutical Research

, 28:2403 | Cite as

Intact Nanoparticulate Indomethacin in Fast-Dissolving Carrier Particles by Combined Wet Milling and Aerosol Flow Reactor Methods

  • Timo LaaksonenEmail author
  • Peng Liu
  • Antti Rahikkala
  • Leena Peltonen
  • Esko I. Kauppinen
  • Jouni Hirvonen
  • Kristiina Järvinen
  • Janne RaulaEmail author



Drug development is often hindered by a drug's low dissolution rate. We present a method to increase dissolution rate of a drug powder by producing crystalline nanoparticles that are dispersed in carrier microparticles.


Indomethacin crystals of a few hundred nanometers are prepared by media milling using poloxamer 188 as a stabilizer. Nanoparticles are embedded into microparticles with a mannitol matrix and an L-leucine coating layer using an aerosol flow reactor method.


Microparticles stabilize the primary nanoparticles in an intact crystalline form and release them when re-dispersed in aqueous medium. Secondary microparticle structure dissolves rapidly, resulting in a fast release and dissolution of indomethacin. In this manner, it is possible to change the surface layer of the particles from the one needed for nanoparticle production to one more suitable for process formulation of pharmaceuticals for, e.g., tablet or pulmonary products.


Particle assemblies where nano-sized crystalline drug domains are embedded in solid microparticles are presented. The present work is a promising approach towards a “nanos-in-micros” concept as a tool for pharmaceutical nanoparticle processing.


aerosol flow reactor drug dissolution media milling microparticles nanoparticles 



JR, AR, and EK acknowledge support from the Academy of Finland (project no. 133407).


  1. 1.
    Rabinow BE. Nanosuspensions in drug delivery. Nature Rev Drug Discov. 2004;3:785–96.CrossRefGoogle Scholar
  2. 2.
    Müller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113:151–70.PubMedCrossRefGoogle Scholar
  3. 3.
    Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling; critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol. 2010;62:1569–79.PubMedCrossRefGoogle Scholar
  4. 4.
    Urata C, Yamauchi Y, Aoyama Y, Imasu J, Todoroki S-I, Sakka Y, et al. Fabrication of hierarchically porous spherical particles by assembling mesoporous silica nanoparticles via spray drying. J Nanosci Nanotechnol. 2008;8:3101–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Gómez-Gaete C, Fattal E, Silva L, Besnard M, Tsapis N. Dexamethasone acetate encapsulation into Trojan particles. J Control Release. 2008;128:41–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Grenha A, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci. 2005;25:427–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Mizoe T, Ozeki T, Okada HJ. Preparation of drug nanoparticle-containing microparticles using a 4-fluid nozzle spray drier for oral, pulmonary, and injection dosage forms. J Control Release. 2007;122(1):10–5.PubMedCrossRefGoogle Scholar
  8. 8.
    El-Gendy N, Gorman EM, Munson EJ, Berkland C. Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J Pharm Sci. 2009;98:2731–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaye RS, Purewal TS, Alpar HO. Simultaneously manufactured nano-in-micro (SIMANIM) particles for dry-powder modified-release delivery of antibodies. J Pharm Sci. 2009;98:4055–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Kho K, Cheow WS, Lie RH, Hadinoto K. Aqueous re-dispersibility of spray-dried antibiotic-loaded polycaprolactone nanoparticle aggregates for inhaled anti-biofilm therapy. Powder Technol. 2010;203:432–9.CrossRefGoogle Scholar
  11. 11.
    Grenha A, Seijo B, Serra C, Remuñán-López C. Chitosan-nanoparticle loaded mannitol microspheres: structure and surface characterization. Biomacromolecules. 2007;8:2072–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Lind A, von Hohenesche CF, Smått J-H, Lindén M, Unger KK. Spherical silica agglomerates possessing hierarchical porosity prepared by spray drying of MCM-41 and MCM-48 nanospheres. Microporous Mesoporous Mater. 2003;66:219–27.CrossRefGoogle Scholar
  13. 13.
    Eerikäinen H, Peltonen L, Raula J, Kauppinen EI, Hirvonen J. Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method. AAPS PharmSciTech. 2004;5:article 68.Google Scholar
  14. 14.
    Tong HHY, Shekunov BY, York P, Chow AHL. Influence of polymorphism on the surface energetics of salmeterol xinafoate crystallized from supercritical fluids. Pharm Res. 2002;19:640–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Eerikäinen H, Watanabe W, Kauppinen EI, Ahonen PP. Aerosol flow reactor method for synthesis of drug nanoparticles. Eur J Pharm Biopharm. 2003;55:357–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Lucas P, Anderson K, Potter UJ, Staniforth JN. Enhancement of small particle size dry powder aerosol formulations using an ultra low density additive. Pharm Res. 1999;16:1643–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Raula J, Kurkela JA, Brown DP, Kauppinen EI. Study of the dispersion behaviour of L-leucine containing microparticles synthesized with an aerosol flow reactor method. Powder Technol. 2007;177:125–32.CrossRefGoogle Scholar
  18. 18.
    Raula J, Lähde A, Kauppinen EI. Aerosolization behavior of carrier-free L-leucine coated salbutamol sulphate powders. Int J Pharm. 2009;365:18–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Raula J, Thielmann F, Naderi M, Lehto V-P, Kauppinen EI. Influence on particle surface characteristics vs. dispersion behaviour of L-leucine coated carrier-free inhalable powders. Int J Pharm. 2010;385:79–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Raula J, Lähde A, Kauppinen EI. A novel gas phase method for the combined synthesis and coating of pharmaceutical particles. Pharm Res. 2008;25:242–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Lähde A, Raula J, Kauppinen EI. Simultaneous synthesis and coating of salbutamol sulphate nanoparticles with L-leucine in the gas phase. Int J Pharm. 2008;358:256–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Raula J, Thielmann F, Kansikas J, Hietala S, Annala M, Seppälä J, et al. Investigations on the humidity-induced transformations of salbutamol sulphate particles coated with L-leucine. Pharm Res. 2008;25:2250–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Raula J, Kuivanen A, Lähde A, Kauppinen EI. Gas-phase synthesis of L-leucine-coated micrometer-sized salbutamol sulphate and sodium chloride particles. Powder Technol. 2008;187:289–97.CrossRefGoogle Scholar
  24. 24.
    Raula J, Kauppinen EI, Huck D, Kippax P, Virden A. Characterizing carrier-free DPI formulations: using laser diffraction and morphological imaging to examine aerosolization performance of carrier-free inhalation powders. Inhalation. 2010;4(4):8–11.Google Scholar
  25. 25.
    Paajanen M, Katainen J, Raula J, Kauppinen EI, Lahtinen J. Direct evidence on reduced adhesion of salbutamol sulphate particles due to L-leucine coating. Powder Technol. 2009;192:6–11.CrossRefGoogle Scholar
  26. 26.
    Liu P, Rong X, Hirvonen J, Laaksonen T, Peltonen L. Nanosuspension of poorly soluble drugs: preparation and development by wet milling. Int J Pharm. 2011. 10.1016/j.ijpharm.2011.03.050.
  27. 27.
    Hillamo R, Kauppinen EI. On the performance of the Berner low pressure impactor. Aerosol Sci Tech. 1991;14:33–47.CrossRefGoogle Scholar
  28. 28.
    Leroueil-Le Verger M, Fluckiger L, Kim Y-I, Hoffman M, Maincent P. Preparation and characterization of nanoparticles containing an antihypertensive agent. Eur J Pharm Biopharm. 1998;46:137–43.PubMedCrossRefGoogle Scholar
  29. 29.
    Raula J, Kuivanen A, Lähde A, Jiang H, Antopolsky M, Kansikas J, et al. Synthesis of L-leucine nanoparticles via physical vapor deposition under various saturation conditions. J Aerosol Sci. 2007;38:1172–84.CrossRefGoogle Scholar
  30. 30.
    Savolainen M, Heinz A, Strachan C, Gordond KC, Yliruusi J, Rades T, et al. Screening for differences in the amorphous state of indomethacin using multivariate visualization. Eur J Pharm Sci. 2007;30:113–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Chaubal MV, Popescu C. Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res. 2008;25:2302–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Timo Laaksonen
    • 1
    Email author
  • Peng Liu
    • 1
  • Antti Rahikkala
    • 2
  • Leena Peltonen
    • 1
  • Esko I. Kauppinen
    • 2
  • Jouni Hirvonen
    • 1
  • Kristiina Järvinen
    • 3
  • Janne Raula
    • 2
    Email author
  1. 1.Division of Pharmaceutical Technology, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Applied PhysicsAalto University School of ScienceAaltoFinland
  3. 3.School of Pharmacy, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland

Personalised recommendations