Pharmaceutical Research

, Volume 28, Issue 6, pp 1395–1405 | Cite as

Chondrogenic Priming Adipose-Mesenchymal Stem Cells for Cartilage Tissue Regeneration

  • Nathaniel S. Hwang
  • Sung Gap Im
  • Patrick B. Wu
  • David A. Bichara
  • Xing Zhao
  • Mark A. Randolph
  • Robert Langer
  • Daniel G. Anderson
Research Paper



Chondrocytes lose their ability to produce cartilaginous matrix during multiplication in culture through repeated passages, resulting in inferior tissue phenotype. To overcome the limited amount of primary chondrocytes, we aimed to determine the optimal culture condition for in vitro/in vivo cartilage regeneration using human adipose-derived mesenchymal stem cells (AMSCs).


To evaluate the effects exerted by the chondrocytic culture condition on AMSC, we utilized chondrocyte conditioned medium (CM) and/or co-culture methods to prime and differentiate AMSCs. We evaluated ultimate in vivo engineered cartilage with primed AMSCs with that of chondrocytes. To examine the link between conditioned factors and proliferation/differentiation, cell cycle progression of AMSCs were examined using 5-ethynyl-2′-deoxyuridine (EdU), and gene expression was monitored.


We report that AMSCs can be stimulated to become chondrogenic cells when expanded with chondrocyte CM. Polymeric scaffolds co-seeded with CM- expanded AMSCs and primary chondrocytes resulted in in vivo cartilaginous tissues with similar biochemical content to constructs seeded with chondrocytes alone.


These results indicate that chondrocyte CM consists of suitable morphogenetic factors that induce the chondrogenic priming of AMSCs for cartilage tissue engineering.


auricular chondrocytes cartilage co-culture human adipose derived mesenchymal stem cells tissue engineering 


  1. 1.
    Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng. 2004;32:148–59.PubMedCrossRefGoogle Scholar
  2. 2.
    Elisseeff J, Puleo C, Yang F, Sharma B. Advances in skeletal tissue engineering with hydrogels. Orthod Craniofac Res. 2005;8:150–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Athanasiou KA, Shah AR, Hernandez RJ, LeBaron RG. Basic science of articular cartilage repair. Clin Sports Med. 2001;20:223–47.PubMedCrossRefGoogle Scholar
  4. 4.
    Brittberg M, Tallheden T, Sjogren-Jansson B, Lindahl A, Peterson L. Autologous chondrocytes used for articular cartilage repair: an update. Clin Orthop Relat Res 2001;S337–48.Google Scholar
  5. 5.
    Abrahamsson CK, Yang F, Park H, Brunger JM, Valonen PK, Langer R, et al. Chondrogenesis and mineralization during in vitro culture of human mesenchymal stem cells on three-dimensional woven scaffolds. (PMID: 20673022) Tissue Eng Part A. 2010;16:3709–18.Google Scholar
  6. 6.
    Estes BT, Diekman BO, Gimble JM, Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc. 2010;5:1294–311.PubMedCrossRefGoogle Scholar
  7. 7.
    Diekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tiss Eng Part A. 2010;16:523–33.CrossRefGoogle Scholar
  8. 8.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Tuli R, Li WJ, Tuan RS. Current state of cartilage tissue engineering. Arthritis Res Ther. 2003;5:235–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Zuscik MJ, Hilton MJ, Zhang X, Chen D, O’Keefe RJ. Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest. 2008;118:429–38.PubMedCrossRefGoogle Scholar
  11. 11.
    Hwang NS, Varghese S, Puleo C, Zhang Z, Elisseeff J. Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells. J Cell Physiol. 2007;212:281–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Gelse K, Brem M, Klinger P, Hess A, Swoboda B, Hennig F, et al. Paracrine effect of transplanted rib chondrocyte spheroids supports formation of secondary cartilage repair tissue. J Orthop Res. 2009;27:1216–25.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen WH, Lai MT, Wu AT, Wu CC, Gelovani JG, Lin CT, et al. In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes. Arthritis Rheum. 2009;60:450–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Hwang NS, Varghese S, Lee HJ, Zhang Z, Ye Z, Bae J, et al. In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci USA. 2008;105:20641–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu X, Sun H, Yan D, Zhang L, Lv X, Liu T, et al. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials. 2010;31:9406–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Ni YF, Li XF, Liu Y, Lei ZJ, Lu Q. In vivo chondrogenesis by co-culture of rabbit bone marrow-derived mesenchymal stem cells and chondrocytes. J Clin Rehab Tiss Eng Res. 2008;12:3185–8.Google Scholar
  17. 17.
    Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res. 2001;19:738–49.PubMedCrossRefGoogle Scholar
  18. 18.
    Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci USA. 2003;100:12741–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.PubMedCrossRefGoogle Scholar
  20. 20.
    McGowan KB, Kurtis MS, Lottman LM, Watson D, Sah RL. Biochemical quantification of DNA in human articular and septal cartilage using PicoGreen and Hoechst 33258. Osteoarthritis Cartilage. 2002;10:580–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986;883:173–7.PubMedGoogle Scholar
  22. 22.
    Woessner Jr JF. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93:440–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Worster AA, Nixon AJ, Brower-Toland BD, Williams J. Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am J Vet Res. 2000;61:1003–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Bosnakovski D, Mizuno M, Kim G, Ishiguro T, Okumura M, Iwanaga T, et al. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Exp Hematol. 2004;32:502–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee JS, Im GI. Influence of Chondrocytes on the Chondrogenic Differentiation of Adipose Stem Cells. (PMID: 20597811) Tissue Eng Part A. 2010;16:3569–77.Google Scholar
  26. 26.
    Estes BT, Diekman BO, Guilak F. Monolayer cell expansion conditions affect the chondrogenic potential of adipose-derived stem cells. Biotechnol Bioeng. 2008;99:986–95.PubMedCrossRefGoogle Scholar
  27. 27.
    Vinardell T, Thorpe SD, Buckley CT, Kelly DJ. Chondrogenesis and integration of mesenchymal stem cells within an in vitro cartilage defect repair model. Ann Biomed Eng. 2009;37:2556–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Choi YS, Lim SM, Shin HC, Lee CW, Kim SL, Kim DI. Chondrogenesis of human periosteum-derived progenitor cells in atelocollagen. Biotechnol Lett. 2007;29:323–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Fischer J, Dickhut A, Rickert M, Richter W. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum. 2010;62:2696–706.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim JS, Ryoo ZY, Chun JS. Cytokine-like 1 (Cytl1) regulates the chondrogenesis of mesenchymal cells. J Biol Chem. 2007;282:29359–67.PubMedCrossRefGoogle Scholar
  31. 31.
    Keller B, Yang T, Chen Y, Munivez E, Bertin T, Zabel B, et al. Interaction of TGFbeta and BMP signaling pathways during chondrogenesis. PLoS One. 2011;6:e16421.PubMedCrossRefGoogle Scholar
  32. 32.
    Im GI, Jung NH, Tae SK. Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Eng. 2006;12:527–36.PubMedCrossRefGoogle Scholar
  33. 33.
    Xie F, Zhang W, Chen F, Zhou G, Cui L, Liu W, et al. Chondrogenic differentiation of mouse embryonic stem cells promoted by mature chondrocytes. Sci China C Life Sci. 2008;51:774–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Tuan RS. Stemming cartilage degeneration: adult mesenchymal stem cells as a cell source for articular cartilage tissue engineering. Arthritis Rheum. 2006;54:3075–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 2003;9:679–88.PubMedCrossRefGoogle Scholar
  36. 36.
    Gerstenfeld LC, Cruceta J, Shea CM, Sampath K, Barnes GL, Einhorn TA. Chondrocytes provide morphogenic signals that selectively induce osteogenic differentiation of mesenchymal stem cells. J Bone Miner Res. 2002;17:221–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Solursh M, Reiter RS. The enhancement of in vitro survival and chondrogenesis of limb bud cells by cartilage conditioned medium. Dev Biol. 1975;44:278–87.PubMedCrossRefGoogle Scholar
  38. 38.
    De Bari C, Dell’Accio F, Luyten FP. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum. 2004;50:142–50.PubMedCrossRefGoogle Scholar
  39. 39.
    D’Angelo M, Pacifici M. Articular chondrocytes produce factors that inhibit maturation of sternal chondrocytes in serum-free agarose cultures: a TGF-beta independent process. J Bone Miner Res. 1997;12:1368–77.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nathaniel S. Hwang
    • 1
  • Sung Gap Im
    • 2
    • 3
  • Patrick B. Wu
    • 1
  • David A. Bichara
    • 4
  • Xing Zhao
    • 4
  • Mark A. Randolph
    • 4
  • Robert Langer
    • 1
    • 2
  • Daniel G. Anderson
    • 1
    • 2
  1. 1.David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  4. 4.Plastic Surgery Research LaboratoryMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations