Pharmaceutical Research

, 28:1653 | Cite as

Antitumour Efficacy of Two Paclitaxel Formulations for Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in an In Vivo Rat Model

  • Wim Bouquet
  • Steven Deleye
  • Steven Staelens
  • Lieselotte De Smet
  • Nancy Van Damme
  • Isabelle Debergh
  • Wim P. Ceelen
  • Filip De Vos
  • Jean Paul Remon
  • Chris Vervaet
Research Paper



To evaluate the tumour growth delay of a peritoneal carcinomatosis (PC) of colorectal origin after intraperitoneal chemotherapy with paclitaxel/randomly-methylated-β-cyclodextrin (Pac/RAME-β-CD) versus Taxol® at normo- and hyperthermic conditions in rats.


Hyperthermic intraperitoneal chemotherapy (HIPEC) was performed 7 days post implantation of the tumour with both formulations at a Pac concentration of 0.24 mg/ml. Tumour evaluation was performed via positron emission tomography (PET) and magnetic resonance imaging (MRI) imaging, measuring tumour activity and tumour volume, respectively. Scans were taken at 2 and 7 days post treatment.


PET and MRI data showed a significant reduction in tumour activity and tumour volume for rats treated with Pac/RAME-β-CD (at normo- and hyperthermic conditions), compared to the control group. Treatment with Taxol® did not result in a significant reduction of tumour activity and tumour volume. No significant differences between the normo- and hyperthermic conditions were observed for both formulations, indicating that hyperthermia and paclitaxel were not synergistic despite the direct cytotoxic effect of hyperthermia.


Monitoring tumour growth via PET and MRI indicated that Pac/RAME-β-CD inclusion complexes had a significantly higher efficacy compared to Taxol® in a rat model for peritoneal carcinomatosis.


hyperthermic intraperitoneal chemotherapy paclitaxel tumour growth delay β-cyclodextrin 

Supplementary material

11095_2011_401_MOESM1_ESM.docx (465 kb)
Illustration 1Example of a μPET image at day 6, maximum tumor to liver ratio of 3.4 (arrow indicates tumour) (DOCX 465 kb)
11095_2011_401_MOESM2_ESM.docx (121 kb)
Illustration 2Example of μMRI image at day 6, volume determination results in 0,13 cm3 (arrow indicates tumour) (DOCX 121 kb)


  1. 1.
    Ceelen W, Bracke M. Peritoneal minimal residual disease in colorectal cancer: mechanisms, prevention, and treatment. Lancet Oncol. 2009;10:72–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Tan DSP, Agarwal R, Kaye SB. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 2006;7:925–34.PubMedCrossRefGoogle Scholar
  3. 3.
    Sadeghi B, Arvieux C, Glehen O, Beaujard AC, Rivoire M, Baulieux, et al. Peritoneal carcinomatosis from non-gynecologic malignancies. Cancer. 2000;88:358–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Verwaal VJ, van Ruth S, de Bree E, van Slooten GW, van Tinteren H, Boot H, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21:3737–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Verwaal VJ, Bruin S, Boot H, van Slooten G, van Tinteren H. 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol. 2008;15:2426–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Markman M. Intraperitoneal antineoplastic drug delivery: rationale and results. Lancet Oncol. 2003;4:277–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Glehen O, Mohamed F, Gillly FN. Peritoneal carcinomatosis from digestive tract cancer: new management by cytoreductive surgery and intraperitoneal chemohyperthermia. Lancet Oncol. 2004;5:219–28.PubMedCrossRefGoogle Scholar
  8. 8.
    Gelderblom H, Verweij J, Nooter K, Sparreboom A, Cremophor EL. The drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37:1590–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Bouquet W, Ceelen W, Fritzinger B, Pattyn P, Peeters M, Remon JP, et al. Paclitaxel/β-cyclodextrin complexes for hyperthermic peritoneal perfusion- Formulation and stability. Eur J Pharm Biopharm. 2007;66:391–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Bouquet W, Boterberg T, Ceelen W, Pattyn P, Peeters M, Bracke M, et al. In vitro cytotoxicity of paclitaxel/β-cyclodextrin complexes for HIPEC. Int J Pharm. 2009;367:148–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Bouquet W, Ceelen W, Adriaens E, Almeida A, Quinten T, De Vos F, et al. In vivo toxicity and bioavailability of Taxol® and a Paclitaxel/β-cyclodextrin formulation in a rat model during HIPEC. Ann Surg Oncol. 2010;17:2510–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Esquivel J, Sticca R, Sugarbaker P, Levine E, Yan TD, Alexander R, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of peritoneal surface malignancies of colonic origin: a consensus statement. Ann Surg Oncol. 2007;14:128–33.PubMedGoogle Scholar
  13. 13.
    Raa ST, Oosterling SJ, van der Kaaij NP, van den Tol MP, Beelen RH, Meijer S, et al. Surgery promotes implantation of disseminated tumor cells, but does not increase growth of tumor cell clusters. J Surg Oncol. 2005;92:124–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Keyes JW. SUV: Standard Uptake or Silly Useless Value? J Nucl Med. 1995;36:1836–9.PubMedGoogle Scholar
  15. 15.
    Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J Pharm Sci. 1995;85:1142–69.CrossRefGoogle Scholar
  16. 16.
    Tsai M, Lu Z, Wang J, Yeh TK, Wientjes MG, Au JLS. Effects of carrier on disposition and antitumor activity of intraperitoneal paclitaxel. Pharm Res. 2007;24:1691–701.PubMedCrossRefGoogle Scholar
  17. 17.
    Gelderblom H, Verweij J, van Zomeren DM, Buijs D, Ouwens L, Nooter K, et al. Influence of Cremophor EL on the bioavailability of intraperitoneal paclitaxel. Clin Cancer Res. 2002;8:1237–41.PubMedGoogle Scholar
  18. 18.
    Sparreboom A, van Zuylen L, Brouwer E, Loos WJ, de Bruyn P, Gelderblom H, et al. Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res. 1999;59:1454–7.PubMedGoogle Scholar
  19. 19.
    Michalakis J, Georgatos SD, de Bree E, Polioudaki H, Romanos J, Georgoulias V, et al. Short-term exposure of cancer cells to micromolar doses of paclitaxel, with or without hyperthermia, induces long-term inhibition of cell proliferation and cell death in vitro. Ann Surg Oncol. 2006;14:1220–8.CrossRefGoogle Scholar
  20. 20.
    Cividalli A, Cruciani G, Livdi E, Pasqualetti P, Danesi DT. Hyperthermia enhances the response of paclitaxel and radiation on a mouse adenocarcinoma. Int J Radiat Oncol Biol Phys. 1999;44:407–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Othman T, Goto S, Lee JB, Taimura A, Matsumoto T, Kosaka M. Hyperthermic enhancement of the apoptotic and antiproliferative activities of paclitaxel. Pharmacology. 2001;62:208–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Rietbroek RC, Katschinski DM, Reijers MHE, et al. Lack of thermal enhancement for taxanes in vitro. Int J Hyperthermia. 1997;13:525–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Mohamed F, Marchettini P, Stuart A, Urano M, Sugarbaker P. Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia. Ann Surg Oncol. 2003;10:463–8.PubMedCrossRefGoogle Scholar
  24. 24.
    de Bree E, Theodoropoulos PA, Rosing H, Michalakis J, Romanos J, Beijnen JH, et al. Treatment of ovarian cancer using intraperitoneal chemotherapy with taxanes: from laboratory bench to bedside. Cancer Treat Rev. 2006;32:471–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Bijelic L, Jonson A, Sugarbaker PH. Systematic review of cytoreductive surgery and heated intraoperative intraperitoneal chemotherapy for treatment of peritoneal carcinomatosis in primary and recurrent ovarian cancer. Ann Oncol. 2007;18:1943–50.PubMedCrossRefGoogle Scholar
  26. 26.
    de Bree E, Rosing H, Filis D, Romanos J, Melissourgaki M, Daskalakis M, et al. Cytoreductive and intraoperative hyperthermic intraperitoneal chemotherapy with paclitaxel: a clinical and pharmacokinetic study. Ann Surg Oncol. 2008;15:1183–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Rufian S, Munoz-Casares FC, Briceno J, Diaz CJ, Rubio MJ, Ortega R, et al. Hyperthermic intraperitoneal chemotherapy in conjunction with surgery for the treatment of recurrent ovarian carcinoma. J Surg Oncol. 2007;105:90–6.Google Scholar
  28. 28.
    Bae JH, Lee JM, Ryu KS, Lee YS, Park YG, Hur SY, et al. Treatment of ovarian cancer with paclitaxel or carboplatin-based intraperitoneal hyperthermic chemotherapy during secondary surgery. Gynecol Oncol. 2007;106:193–209.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Wim Bouquet
    • 1
  • Steven Deleye
    • 2
  • Steven Staelens
    • 2
    • 3
  • Lieselotte De Smet
    • 1
  • Nancy Van Damme
    • 4
  • Isabelle Debergh
    • 5
  • Wim P. Ceelen
    • 5
  • Filip De Vos
    • 6
  • Jean Paul Remon
    • 1
  • Chris Vervaet
    • 1
  1. 1.Laboratory of Pharmaceutical TechnologyGhent UniversityGhentBelgium
  2. 2.Medical Image and Signal ProcessingGhent University-IBBTGhentBelgium
  3. 3.Molecular Imaging Center AntwerpAntwerp UniversityAntwerpBelgium
  4. 4.Department of GastroenterologyGhent University HospitalGhentBelgium
  5. 5.Department of Gastrointestinal SurgeryGhent University HospitalGhentBelgium
  6. 6.Laboratory of RadiopharmacyGhent UniversityGhentBelgium

Personalised recommendations