Pharmaceutical Research

, Volume 28, Issue 5, pp 1081–1089 | Cite as

Assessment of Pharmacologic Area Under the Curve When Baselines are Variable

  • Jeremy D. Scheff
  • Richard R. Almon
  • Debra C. DuBois
  • William J. Jusko
  • Ioannis P. AndroulakisEmail author
Research Paper



The area under the curve (AUC) is commonly used to assess the extent of exposure of a drug. The same concept can be applied to generally assess pharmacodynamic responses and the deviation of a signal from its baseline value. When the initial condition for the response of interest is not zero, there is uncertainty in the true value of the baseline measurement. This necessitates the consideration of the AUC relative to baseline to account for this inherent uncertainty and variability in baseline measurements.


An algorithm to calculate the AUC with respect to a variable baseline is developed by comparing the AUC of the response curve with the AUC of the baseline while taking into account uncertainty in both measurements. Furthermore, positive and negative components of AUC (above and below baseline) are calculated separately to allow for the identification of biphasic responses.


This algorithm is applied to gene expression data to illustrate its ability to capture transcriptional responses to a drug that deviate from baseline and to synthetic data to quantitatively test its performance.


The variable nature of the baseline is an important aspect to consider when calculating the AUC.


AUC baseline bioinformatics microarrays pharmacogenomics 



JDS and IPA acknowledge support from NIH Grant No. GM082974. RRA, DCD and WJJ acknowledge support from NIH Grants No. GM24211 and GM57980.

Supplementary material

11095_2010_363_MOESM1_ESM.xls (66 kb)
ESM 1 (XLS 66 kb)
11095_2010_363_MOESM2_ESM.doc (46 kb)
ESM 2 (DOC 45 kb)


  1. 1.
    Kwon Y. Handbook of essential pharmacokinetics, pharmacodynamics, and drug metabolism for industrial scientists. New York: Kluwer Academic/Plemun Publishers; 2001.Google Scholar
  2. 2.
    Krzyzanski W, Jusko WJ. Integrated functions for four basic models of indirect pharmacodynamic response. J Pharm Sci. 1998;87(1):67–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98(9):5116–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinform. 2006;7:191.CrossRefGoogle Scholar
  5. 5.
    Jin JY, Almon RR, DuBois DC, Jusko WJ. Modeling of corticosteroid pharmacogenomics in rat liver using gene microarrays. J Pharmacol Exp Ther. 2003;307(1):93–109.PubMedCrossRefGoogle Scholar
  6. 6.
    Wolfsegger MJ. Establishing bioequivalence in serial sacrifice designs. J Pharmacokinet Pharmacodyn. 2007;34(1):103–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Bonate PL. Coverage and precision of confidence intervals for area under the curve using parametric and non-parametric methods in a toxicokinetic experimental design. Pharm Res. 1998;15(3):405–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Mager H, Goller G. Resampling methods in sparse sampling situations in preclinical pharmacokinetic studies. J Pharm Sci. 1998;87(3):372–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Bailer AJ. Testing for the equality of area under the curves when using destructive measurement techniques. J Pharmacokinet Biopharm. 1988;16(3):303–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Yuan J. Estimation of variance for AUC in animal studies. J Pharm Sci. 1993;82(7):761–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Sharma A, Ebling WF, Jusko WJ. Precursor-dependent indirect pharmacodynamic response model for tolerance and rebound phenomena. J Pharm Sci. 1998;87(12):1577–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Woo S, Pawaskar D, Jusko WJ. Methods of utilizing baseline values for indirect response models. J Pharmacokinet Pharmacodyn. 2009;36(5):381–405.PubMedCrossRefGoogle Scholar
  13. 13.
    Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, et al. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res. 2009 Jan;37(Database issue):D885–90.Google Scholar
  14. 14.
    Storey JD, Tibshirani R. Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol. 2003;224:149–57.PubMedGoogle Scholar
  15. 15.
    Wolfsegger MJ, Jaki T. Estimation of AUC from 0 to infinity in serial sacrifice designs. J Pharmacokinet Pharmacodyn. 2005;32(5–6):757–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Jaki T, Wolfsegger MJ, Ploner M. Confidence intervals for ratios of AUCs in the case of serial sampling: a comparison of seven methods. Pharm Stat. 2009;8(1):12–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Leek JT, Monsen E, Dabney AR, Storey JD. EDGE: extraction and analysis of differential gene expression. Bioinformatics. 2006;22(4):507–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Krzyzanski W, Jusko WJ. Characterization of pharmacodynamic recession slopes for direct and indirect response models. J Pharmacokinet Biopharm. 1998;26(4):409–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jeremy D. Scheff
    • 1
  • Richard R. Almon
    • 2
    • 3
  • Debra C. DuBois
    • 2
    • 3
  • William J. Jusko
    • 3
  • Ioannis P. Androulakis
    • 1
    • 4
    Email author
  1. 1.Biomedical Engineering DepartmentRutgers UniversityPiscatawayUSA
  2. 2.Department of Biological SciencesState University of New York at BuffaloBuffaloUSA
  3. 3.Department of Pharmaceutical SciencesState University of New York at BuffaloBuffaloUSA
  4. 4.Chemical and Biochemical Engineering DepartmentRutgers UniversityPiscatawayUSA

Personalised recommendations