Pharmaceutical Research

, Volume 28, Issue 6, pp 1415–1421 | Cite as

Stability of a Therapeutic Layer of Immobilized Recombinant Human Tropoelastin on a Plasma-Activated Coated Surface

  • Anna Waterhouse
  • Daniel V. Bax
  • Steven G. Wise
  • Yongbai Yin
  • Louise L. Dunn
  • Giselle C. Yeo
  • Martin K. C. Ng
  • Marcela M. M. Bilek
  • Anthony S. WeissEmail author
Research Paper



To modify blood-contacting stainless surfaces by covalently coating them with a serum-protease resistant form of tropoelastin (TE). To demonstrate that the modified TE retains an exposed, cell-adhesive C-terminus that persists in the presence of blood plasma proteases.


Recombinant human TE and a point mutant variant (R515A) of TE were labeled with 125Iodine and immobilized on plasma-activated stainless steel (PAC) surfaces. Covalent attachment was confirmed using rigorous detergent washing. As kallikrein and thrombin dominate the serum degradation of tropoelastin, supraphysiological levels of these proteases were incubated with covalently bound TE and R515A, then assayed for protein levels by radioactivity detection. Persistence of the C-terminus was assessed by ELISA.


TE was significantly retained covalently on PAC surfaces at 88 ± 5% and 71 ± 5% after treatment with kallikrein and thrombin, respectively. Retention of R515A was 100 ± 1.3% and 87 ± 2.3% after treatment with kallikrein and thrombin, respectively, representing significant improvements over TE. The functionally important C-terminus was cleaved in wild-type TE but retained by R515A.


Protein persists in the presence of human kallikrein and thrombin when covalently immobilized on metal substrata. R515A displays enhanced protease resistance and retains the C-terminus presenting a protein interface that is viable for blood-contacting applications.


kallikrein plasma-activated thrombin tropoelastin 




316L SS

316L stainless steel


analysis of variance


plasma-activated coating


polyethylene oxide


point-mutant tropoelastin SHEL∆26A(R515A)


sodium dodecyl sulfate


scanning electron microscopy


tropoelastin (SHEL∆26A)



This work was supported by grants from the Australian Research Council, the National Health and Medical Research Council, and the University of Sydney Medical Foundation.


  1. 1.
    Wong LS, Khan F, Micklefield J. Selective covalent protein immobilization: strategies and applications. Chem Rev. 2009;109:4025–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective. Biomaterials. 2007;28:1689–710.PubMedCrossRefGoogle Scholar
  3. 3.
    Nagaoka M, Jiang HL, Hoshiba T, Akaike T, Cho CS. Application of recombinant fusion proteins for tissue engineering. Ann Biomed Eng. 2010;38:683–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Colman RW, Marder VJ, Clowes AW, George JN, Goldhaber SZ, editors. Hemostasis and Thrombosis. Basic principles and clinical practice. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 437–41.Google Scholar
  5. 5.
    Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25:5681–703.PubMedCrossRefGoogle Scholar
  6. 6.
    Karnik SK, Brooke BS, Bayes-Genis A, Sorensen L, Wythe JD, Schwartz RS, et al. A critical role for elastin signaling in vascular morphogenesis and disease. Development. 2003;130:411–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Jordan SW, Chaikof EL. Novel thromboresistant materials. J Vasc Surg. 2007;45:A104–15.PubMedCrossRefGoogle Scholar
  8. 8.
    Jensen SA, Vrhovski B, Weiss AS. Domain 26 of tropoelastin plays a dominant role in association by coacervation. J Biol Chem. 2000;275:28449–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, et al. Elastin-based materials. Chem Soc Rev. 2010. doi: 10.1039/b919452p.PubMedGoogle Scholar
  10. 10.
    Bax DV, Rodgers UR, Bilek MMM, Weiss AS. Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin alphaVbeta3. J Biol Chem. 2009;284:28616–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Rodgers UR, Weiss AS. Cellular interactions with elastin. Pathol Biol. 2005;53:390–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Bilek MMM, McKenzie DR. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys Rev. 2010;2:55–65.CrossRefGoogle Scholar
  13. 13.
    Yin Y, Wise SG, Nosworthy NJ, Waterhouse A, Bax DV, Youssef H, et al. Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces. Biomaterials. 2009;30:1675–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Waterhouse A, Yin Y, Wise SG, Bax D, McKenzie DR, Bilek MMM, et al. The immobilization of recombinant human tropoelastin on metals using a plasma-activated coating to improve biocompatibility of coronary stents. Biomaterials. 2010;31:8332–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Yin Y, Fisher K, Nosworthy NJ, Bax D, Rubanov S, Gong B, et al. Covalently bound biomimetic layers on plasma polymers with graded metallic interfaces for in vivo implants. Plasma Processes Polym. 2009;6:658–66.CrossRefGoogle Scholar
  16. 16.
    Manning M, Chou D, Murphy B, Payne R, Katayama D. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27:544–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Martin SL, Vrhovski B, Weiss AS. Total synthesis and expression in Escherichia coli of a gene encoding human tropoelastin. Gene. 1995;154:159–66.PubMedCrossRefGoogle Scholar
  18. 18.
    Yin Y, Nosworthy NJ, Youssef H, Gong B, Bilek MMM, McKenzie DR. Acetylene plasma coated surfaces for covalent immobilization of proteins. Thin Solid Films. 2009;517:5343–6.CrossRefGoogle Scholar
  19. 19.
    Wu WJ, Vrhovski B, Weiss AS. Glycosaminoglycans mediate the coacervation of human tropoelastin through dominant charge interactions involving lysine side chains. J Biol Chem. 1999;274:21719–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Wu WJ, Vrhovski B, Weiss AS. Glycosaminoglycans mediate the coacervation of human tropoelastin through dominant charge interactions involving lysine side chains. J Biol Chem. 1999;274:21719–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang A, Cao T, Tang H, Liang X, Salley SO, Ng KYS. In vitro haemocompatibility and stability of two types of heparin-immobilized silicon surfaces. Colloids Surf, B. 2005;43:245–55.CrossRefGoogle Scholar
  22. 22.
    Thorslund S, Sanchez J, Larsson R, Nikolajeff F, Bergquist J. Functionality and stability of heparin immobilized onto poly(dimethylsiloxane). Colloids Surf, B. 2005;45:76–81.CrossRefGoogle Scholar
  23. 23.
    Onder S, Kazmanli K, Kok FN. Alteration of PTFE surface to increase its blood compatibility. J Biomater Sci. 2010. doi: 10.1163/092050610X510551.Google Scholar
  24. 24.
    Yang Z, Wang J, Luo R, Maitz MF, Jing F, Sun H, Huang N. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials. In Press, Corrected Proof: 2009.Google Scholar
  25. 25.
    Mohamed S, Aly A, Mohamed T, Salah H. Immobilization of horseradish peroxidase on nonwoven polyester fabric coated with chitosan. Appl Biochem Biotechnol. 2008;144:169–79.PubMedCrossRefGoogle Scholar
  26. 26.
    Andersson J, Bexborn F, Klinth J, Nilsson B, Ekdahl KN. Surface-attached PEO in the form of activated pluronic with immobilized factor H reduces both coagulation and complement activation in a whole-blood model. J Biomed Mater Res A. 2005;76A:25–34.Google Scholar
  27. 27.
    Chen M-C, Liang H-F, Chiu Y-L, Chang Y, Wei H-J, Sung H-W. A novel drug-eluting stent spray-coated with multi-layers of collagen and sirolimus. J Control Release. 2005;108:178–89.PubMedCrossRefGoogle Scholar
  28. 28.
    Seeger JM, Ingegno MD, Bigatan E, Klingman N, Amery D, Widenhouse C, et al. Hydrophilic surface modification of metallic endoluminal stents. J Vasc Surg. 1995;22:327–36.PubMedCrossRefGoogle Scholar
  29. 29.
    De Scheerder I, Verbeken E, Van Humbeeck J. Metallic surface modification. Semin Interv Cardiol. 1998;3:139–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Chan AKC, Rak J, Berry L, Liao P, Vlasin M, Weitz J, et al. Antithrombin-heparin covalent complex: a possible alternative to heparin for arterial thrombosis prevention. Circulation. 2002;106:261–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Leckband D, Langer R. An approach for the stable immobilization of proteins. Biotechnol Bioeng. 1991;37:227–37.PubMedCrossRefGoogle Scholar
  32. 32.
    Bax DV, McKenzie DR, Weiss AS, Bilek MMM. The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity. Biomaterials. 2010;31:2526–34.PubMedCrossRefGoogle Scholar
  33. 33.
    Kondyurin A, Nosworthy NJ, Bilek MMM. Attachment of horseradish peroxidase to polytetrafluorethylene (teflon) after plasma immersion ion implantation. Acta Biomater. 2008;4:1218–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anna Waterhouse
    • 1
  • Daniel V. Bax
    • 2
  • Steven G. Wise
    • 3
  • Yongbai Yin
    • 2
  • Louise L. Dunn
    • 3
  • Giselle C. Yeo
    • 1
  • Martin K. C. Ng
    • 4
  • Marcela M. M. Bilek
    • 2
  • Anthony S. Weiss
    • 1
    Email author
  1. 1.School of Molecular Bioscience,University of SydneySydneyAustralia
  2. 2.Applied & Plasma Physics Group, Physics SchoolUniversity of SydneySydneyAustralia
  3. 3.The Heart Research InstituteSydneyAustralia
  4. 4.Department of Cardiology,Royal Prince Alfred HospitalSydneyAustralia

Personalised recommendations