Pharmaceutical Research

, Volume 28, Issue 7, pp 1480–1499 | Cite as

Protein Microarrays: Novel Developments and Applications

  • Luis Berrade
  • Angie E. Garcia
  • Julio A. Camarero
Expert Review


Protein microarray technology possesses some of the greatest potential for providing direct information on protein function and potential drug targets. For example, functional protein microarrays are ideal tools suited for the mapping of biological pathways. They can be used to study most major types of interactions and enzymatic activities that take place in biochemical pathways and have been used for the analysis of simultaneous multiple biomolecular interactions involving protein-protein, protein-lipid, protein-DNA and protein-small molecule interactions. Because of this unique ability to analyze many kinds of molecular interactions en masse, the requirement of very small sample amount and the potential to be miniaturized and automated, protein microarrays are extremely well suited for protein profiling, drug discovery, drug target identification and clinical prognosis and diagnosis. The aim of this review is to summarize the most recent developments in the production, applications and analysis of protein microarrays.


drug discovery protein chips protein immobilization protein profiling proteomics 



Work was supported by funding from the School of Pharmacy at the University of Southern California, National Institute of Health award GM090323-01 and Department of Defense, Prostate Cancer Research Program of the Office of the Congressionally Directed Medical Research Programs award PC093051 to J.A.C.


  1. 1.
    Tomizaki KY, Usui K, Mihara H. Protein-detecting microarrays: current accomplishments and requirements. Chembiochem. 2005;6(5):782–99.PubMedGoogle Scholar
  2. 2.
    Wolf-Yadlin A, Sevecka M, MacBeath G. Dissecting protein function and signaling using protein microarrays. Curr Opin Chem Biol. 2009;13(4):398–405.PubMedGoogle Scholar
  3. 3.
    Weinrich D, Jonkheijm P, Niemeyer CM, Waldmann H. Applications of protein biochips in biomedical and biotechnological research. Angew Chem Int Ed Engl. 2009;48(42):7744–51.PubMedGoogle Scholar
  4. 4.
    Camarero JA. Recent developments in the site-specific immobilization of proteins onto solid supports. Biopolymers. 2008;90(3):450–8.PubMedGoogle Scholar
  5. 5.
    Coleman MA, Hoeprich P, Beernink P, Camarero JA. Cell-free protein expression screening and protein immobilization using protein microarrays. In: Kudlicki W, Katzen F, Bennett R, editors. Cell Free Expression Systems Landes Bioscience Publishers; 2007.Google Scholar
  6. 6.
    Coleman MA, Beernink PT, Camarero JA, Albala JS. Applications of functional protein microarrays: identifying protein–protein interactions in an array format. Methods Mol Biol. 2007;385:121–30.PubMedGoogle Scholar
  7. 7.
    He M, Stoevesandt O, Taussig MJ. In situ synthesis of protein arrays. Curr Opin Biotechnol. 2008;19(1):4–9.PubMedGoogle Scholar
  8. 8.
    Spisak S, Guttman A. Biomedical applications of protein microarrays. Curr Med Chem. 2009;16(22):2806–15.PubMedGoogle Scholar
  9. 9.
    Kodadek T. Protein microarrays: prospects and problems. Chem Biol. 2001;8(2):105–15.PubMedGoogle Scholar
  10. 10.
    MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science. 2000;289(5485):1760–3.PubMedGoogle Scholar
  11. 11.
    Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, et al. Global analysis of protein activities using proteome chips. Science. 2001;293(5537):2101–5.PubMedGoogle Scholar
  12. 12.
    Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, et al. Global analysis of protein phosphorylation in yeast. Nature. 2005;438(7068):679–84.PubMedGoogle Scholar
  13. 13.
    Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev. 2009;23(1):80–92.PubMedGoogle Scholar
  14. 14.
    Lin YY, Lu JY, Zhang J, Walter W, Dang W, Wan J, et al. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell. 2009;136(6):1073–84.PubMedGoogle Scholar
  15. 15.
    Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M. Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc Natl Acad Sci USA. 2007;104(44):17494–9.PubMedGoogle Scholar
  16. 16.
    Anderson KS, Ramachandran N, Wong J, Raphael JV, Hainsworth E, Demirkan G, et al. Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J Proteome Res. 2008;7(4):1490–9.PubMedGoogle Scholar
  17. 17.
    Merbl Y, Kirschner MW. Large-scale detection of ubiquitination substrates using cell extracts and protein microarrays. Proc Natl Acad Sci USA. 2009;106(8):2543–8.PubMedGoogle Scholar
  18. 18.
    Espejo A, Cote J, Bednarek A, Richard S, Bedford MT. A protein-domain microarray identifies novel protein–protein interactions. Biochem J. 2002;367(Pt 3):697–702.PubMedGoogle Scholar
  19. 19.
    Hesselberth JR, Miller JP, Golob A, Stajich JE, Michaud GA, Fields S. Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biol. 2006;7(4):R30.PubMedGoogle Scholar
  20. 20.
    Lim CS, Seet BT, Ingham RJ, Gish G, Matskova L, Winberg G, et al. The K15 protein of Kaposi’s sarcoma-associated herpesvirus recruits the endocytic regulator intersectin 2 through a selective SH3 domain interaction. Biochemistry. 2007;46(35):9874–85.PubMedGoogle Scholar
  21. 21.
    Polverini E, Rangaraj G, Libich DS, Boggs JM, Harauz G. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications. Biochemistry. 2008;47(1):267–82.PubMedGoogle Scholar
  22. 22.
    Boutell JM, Hart DJ, Godber BL, Kozlowski RZ, Blackburn JM. Functional protein microarrays for parallel characterisation of p53 mutants. Proteomics. 2004;4(7):1950–8.PubMedGoogle Scholar
  23. 23.
    Jones RB, Gordus A, Krall JA, MacBeath G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature. 2006;439(7073):168–74.PubMedGoogle Scholar
  24. 24.
    Stiffler MA, Chen JR, Grantcharova VP, Lei Y, Fuchs D, Allen JE, et al. PDZ domain binding selectivity is optimized across the mouse proteome. Science. 2007;317(5836):364–9.PubMedGoogle Scholar
  25. 25.
    Chen JR, Chang BH, Allen JE, Stiffler MA, MacBeath G. Predicting PDZ domain-peptide interactions from primary sequences. Nat Biotechnol. 2008;26(9):1041–5.PubMedGoogle Scholar
  26. 26.
    Kaushansky A, Allen JE, Gordus A, Stiffler MA, Karp ES, Chang BH, et al. Quantifying protein–protein interactions in high throughput using protein domain microarrays. Nat Protoc. 2010;5(4):773–90.Google Scholar
  27. 27.
    Woo Y-H, Camarero JA. Interfacing ‘Hard’ and ‘Soft’ matter with exquisite chemical control. Curr Nanosci. 2006;2:93–103.Google Scholar
  28. 28.
    Camarero JA. New developments for the site-specific attachment of proptein to surface. Biophys Rev Lett. 2006;1(1):1–28.Google Scholar
  29. 29.
    Jonkheijm P, Weinrich D, Schroder H, Niemeyer CM, Waldmann H. Chemical strategies for generating protein biochips. Angew Chem Int Ed. 2008;47(50):9618–47.Google Scholar
  30. 30.
    Lin PC, Weinrich D, Waldmann H. Protein biochips: oriented surface immobilization of proteins. Macromol Chem Phys. 2010;211(2):136–44.Google Scholar
  31. 31.
    Kolmar H, Skerra A. Alternative binding proteins get mature: rivalling antibodies. FEBS J. 2008;275(11):2667.PubMedGoogle Scholar
  32. 32.
    Daly NL, Rosengren KJ, Craik DJ. Discovery, structure and biological activities of cyclotides. Adv Drug Deliv Rev. 2009;61(11):918–30.PubMedGoogle Scholar
  33. 33.
    Miller JC, Zhou H, Kwekel J, Cavallo R, Burke J, Butler EB, et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics. 2003;3(1):56–63.PubMedGoogle Scholar
  34. 34.
    Gembitsky DS, Lawlor K, Jacovina A, Yaneva M, Tempst P. A prototype antibody microarray platform to monitor changes in protein tyrosine phosphorylation. Mol Cell Proteomics. 2004;3(11):1102–18.PubMedGoogle Scholar
  35. 35.
    Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK. Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA. 2003;100(16):9330–5.PubMedGoogle Scholar
  36. 36.
    Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D, et al. Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods. 2007;4(5):437–44.PubMedGoogle Scholar
  37. 37.
    Kusnezow W, Banzon V, Schroder C, Schaal R, Hoheisel JD, Ruffer S, et al. Antibody microarray-based profiling of complex specimens: systematic evaluation of labeling strategies. Proteomics. 2007;7(11):1786–99.PubMedGoogle Scholar
  38. 38.
    Ghobrial IM, McCormick DJ, Kaufmann SH, Leontovich AA, Loegering DA, Dai NT, et al. Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood. 2005;105(9):3722–30.PubMedGoogle Scholar
  39. 39.
    Hamelinck D, Zhou H, Li L, Verweij C, Dillon D, Feng Z, et al. Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol Cell Proteomics. 2005;4(6):773–84.PubMedGoogle Scholar
  40. 40.
    Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C. Profiling bladder cancer using targeted antibody arrays. Am J Pathol. 2006;168(1):93–103.PubMedGoogle Scholar
  41. 41.
    Gaudet S, Janes KA, Albeck JG, Pace EA, Lauffenburger DA, Sorger PK. A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol Cell Proteomics. 2005;4(10):1569–90.PubMedGoogle Scholar
  42. 42.
    Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science. 2005;310(5754):1646–53.PubMedGoogle Scholar
  43. 43.
    Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene. 2001;20(16):1981–9.PubMedGoogle Scholar
  44. 44.
    Chan SM, Ermann J, Su L, Fathman CG, Utz PJ. Protein microarrays for multiplex analysis of signal transduction pathways. Nat Med. 2004;10(12):1390–6.PubMedGoogle Scholar
  45. 45.
    Ambroz KL, Zhang Y, Schutz-Geschwender A, Olive DM. Blocking and detection chemistries affect antibody performance on reverse phase protein arrays. Proteomics. 2008;8(12):2379–83.PubMedGoogle Scholar
  46. 46.
    Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A. Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem. 2000;278(2):123–31.PubMedGoogle Scholar
  47. 47.
    Lee KB, Park SJ, Mirkin CA, Smith JC, Mrksich M. Protein nanoarrays generated by dip-pen nanolithography. Science. 2002;295(5560):1702–5.PubMedGoogle Scholar
  48. 48.
    Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016–8.PubMedGoogle Scholar
  49. 49.
    Liu GY, Amro NA. Positioning protein molecules on surfaces: a nanoengineering approach to supramolecular chemistry. Proc Natl Acad Sci USA. 2002;99(8):5165–70.PubMedGoogle Scholar
  50. 50.
    Phizicky E, Bastiaens PI, Zhu H, Snyder M, Fields S. Protein analysis on a proteomic scale. Nature. 2003;422(6928):208–15.PubMedGoogle Scholar
  51. 51.
    Lesaicherre ML, Lue RY, Chen GY, Zhu Q, Yao SQ. Intein-mediated biotinylation of proteins and its application in a protein microarray. J Am Chem Soc. 2002;124(30):8768–9.PubMedGoogle Scholar
  52. 52.
    Lesaicherre ML, Uttamchandani M, Chen GY, Yao SQ. Developing site-specific immobilization strategies of peptides in a microarray. Bioorg Med Chem Lett. 2002;12(16):2079–83.PubMedGoogle Scholar
  53. 53.
    Delehanty JB, Ligler FS. A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal Chem. 2002;74(21):5681–7.PubMedGoogle Scholar
  54. 54.
    Marin VL, Bayburt TH, Sligar SG, Mrksich M. Functional assays of membrane-bound proteins with SAMDI-TOF mass spectrometry. Angew Chem Int Ed. 2007;46(46):8796–8.Google Scholar
  55. 55.
    Kawahashi Y, Doi N, Takashima H, Tsuda C, Oishi Y, Oyama R, et al. In vitro protein microarrays for detecting protein–protein interactions: application of a new method for fluorescence labeling of proteins. Proteomics. 2003;3(7):1236–43.PubMedGoogle Scholar
  56. 56.
    Quinn J, Patel P, Fitzpatrick B, Manning B, Dillon P, Daly S, et al. The use of regenerable, affinity ligand-based surfaces for immunosensor applications. Biosens Bioelectron. 1999;14(6):587–95.PubMedGoogle Scholar
  57. 57.
    Oh BK, Kim YK, Lee W, Bae YM, Lee WH, Choi JW. Immunosensor for detection of Legionella pneumophila using surface plasmon resonance. Biosens Bioelectron. 2003;18(5–6):605–11.PubMedGoogle Scholar
  58. 58.
    Dickason RR, Edwards RA, Bryan J, Huston DP. Versatile E. coli thioredoxin specific monoclonal antibodies afford convenient analysis and purification of prokaryote expressed soluble fusion protein. J Immunol Methods. 1995;185(2):237–44.PubMedGoogle Scholar
  59. 59.
    di Guan C, Li P, Riggs PD, Inouye H. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene. 1988;67(1):21–30.PubMedGoogle Scholar
  60. 60.
    Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, et al. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. 1997;192(2):271–81.PubMedGoogle Scholar
  61. 61.
    Becker CF, Wacker R, Bouschen W, Seidel R, Kolaric B, Lang P, et al. Direct readout of protein–protein interactions by mass spectrometry from protein–DNA microarrays. Angew Chem Int Ed Engl. 2005;44(46):7635–9.PubMedGoogle Scholar
  62. 62.
    Niemeyer CM. Semisynthetic DNA–protein conjugates for biosensing and nanofabrication. Angew Chem Int Ed Engl. 2010;49(7):1200–16.PubMedGoogle Scholar
  63. 63.
    Soellner MB, Dickson KA, Nilsson BL, Raines RT. Site-specific protein immobilization by Staudinger ligation. J Am Chem Soc. 2003;125(39):11790–1.PubMedGoogle Scholar
  64. 64.
    Kohn M, Wacker R, Peters C, Schroder H, Soulere L, Breinbauer R, et al. Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays. Angew Chem Int Ed. 2003;42(47):5830–4.Google Scholar
  65. 65.
    Lue RY, Chen GY, Hu Y, Zhu Q, Yao SQ. Versatile protein biotinylation strategies for potential high-throughput proteomics. J Am Chem Soc. 2004;126(4):1055–62.PubMedGoogle Scholar
  66. 66.
    Yin J, Liu F, Li X, Walsh CT. Labeling proteins with small molecules by site-specific posttranslational modification. J Am Chem Soc. 2004;126(25):7754–5.PubMedGoogle Scholar
  67. 67.
    Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, et al. Self-assembling protein microarrays. Science. 2004;305(5680):86–90.PubMedGoogle Scholar
  68. 68.
    Camarero JA, Kwon Y. Traceless and site-specific attachment of proteins onto solid supports. Int J Pept Res Ther. 2008;14:351–7.Google Scholar
  69. 69.
    Lin P-C, Weinrich D, Waldmann H. Protein biochips: oriented surface immobilization of proteins. Macromol Chem Phys. 2010;211:136–44.Google Scholar
  70. 70.
    Schnolzer M, Kent SB. Constructing proteins by dovetailing unprotected synthetic peptides: backbone-engineered HIV protease. Science. 1992;256(5054):221–5.PubMedGoogle Scholar
  71. 71.
    Kohn M, Breinbauer R. The staudinger ligation—a gift to chemical biology. Angew Chem Int Ed. 2004;43(24):3106–16.Google Scholar
  72. 72.
    Muir TW. Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem. 2003;72:249–89.PubMedGoogle Scholar
  73. 73.
    Tam JP, Xu JX, Eom KD. Methods and strategies of peptide ligation. Biopolymers. 2001;60(3):194–205.PubMedGoogle Scholar
  74. 74.
    Aimoto S. Contemporary methods for peptide and protein synthesis. Curr Org Chem. 2001;5(1):45–87.Google Scholar
  75. 75.
    Nilsson BL, Kiessling LL, Raines RT. High-yielding Staudinger ligation of a phosphinothioester and azide to form a peptide. Org Lett. 2001;3(1):9–12.PubMedGoogle Scholar
  76. 76.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed. 2002;41(14):2596–9.Google Scholar
  77. 77.
    Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG. Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc. 2003;125(11):3192–3.PubMedGoogle Scholar
  78. 78.
    Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules. 2007;8(6):1775–89.PubMedGoogle Scholar
  79. 79.
    Heise A, Menzel H, Yim H, Foster MD, Wieringa RH, Schouten AJ, et al. Grafting of polypeptides on solid substrates by initiation of N-carboxyanhydride polymerization by amino-terminated self-assembled monolayers. Langmuir. 1997;13(4):723–8.Google Scholar
  80. 80.
    Ulman A. Formation and structure of self-assembled monolayers. Chem Rev. 1996;96:1533–54.PubMedGoogle Scholar
  81. 81.
    Sullivan TP, Huck WTS. Reactions on monolayers: organic synthesis in two dimensions. Eur J Org Chem. 2003;2003:17–29.Google Scholar
  82. 82.
    Biebuyck HA, Bian CD, Whitesides GM. Comparison of organic monolayers on plycrystalline gold spontaneously. Langmuir. 1994;10(6):1825–31.Google Scholar
  83. 83.
    Cheung CL, Camarero JA, Woods BW, Lin TW, Johnson JE, De Yoreo JJ. Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J Am Chem Soc. 2003;125(23):6848–9.PubMedGoogle Scholar
  84. 84.
    Camarero JA, Kwon Y, Coleman MA. Chemoselective attachment of biologically active proteins to surfaces by expressed protein ligation and its application for “protein chip” fabrication. J Am Chem Soc. 2004;126(45):14730–1.PubMedGoogle Scholar
  85. 85.
    Kwon Y, Coleman MA, Camarero JA. Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew Chem Int Ed. 2006;45(11):1726–9.Google Scholar
  86. 86.
    Prats-Alfonso E, Garcia-Martin F, Bayo N, Cruz LJ, Pla-Roca M, Samitier J, et al. Facile solid-phase synthesis of biotinylated alky thiols. Tetrahedron. 2006;62(29):6876–81.Google Scholar
  87. 87.
    Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A, Klemic KG, et al. Analysis of yeast protein kinases using protein chips. Nat Genet. 2000;26(3):283–9.PubMedGoogle Scholar
  88. 88.
    Delamarche E, Bernard A, Schmid H, Michel B, Biebuyck H. Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science. 1997;276(5313):779–81.PubMedGoogle Scholar
  89. 89.
    Nishikawa M, Yamamoto T, Kojima N, Kikuo K, Fujii T, Sakai Y. Stable immobilization of rat hepatocytes as hemispheroids onto collagen-conjugated poly-dimethylsiloxane (PDMS) surfaces: importance of direct oxygenation through PDMS for both formation and function. Biotechnol Bioeng. 2008;99(6):1472–81.PubMedGoogle Scholar
  90. 90.
    Henry AC, Tutt TJ, Galloway M, Davidson YY, McWhorter CS, Soper SA, et al. Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. Anal Chem. 2000;72(21):5331–7.PubMedGoogle Scholar
  91. 91.
    Noren CJ, Wang JM, Perler FB. Dissecting the chemistry of protein splicing and its applications. Angew Chem Int Ed. 2000;39(3):451–6.Google Scholar
  92. 92.
    Girish A, Sun H, Yeo DS, Chen GY, Chua TK, Yao SQ. Site-specific immobilization of proteins in a microarray using intein-mediated protein splicing. Bioorg Med Chem Lett. 2005;15(10):2447–51.PubMedGoogle Scholar
  93. 93.
    Frank R, Overwin H. SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol Biol. 1996;66:149–69.PubMedGoogle Scholar
  94. 94.
    Toepert F, Knaute T, Guffler S, Pires JR, Matzdorf T, Oschkinat H, et al. Combining SPOT synthesis and native peptide ligation to create large arrays of WW protein domains. Angew Chem Int Ed. 2003;42(10):1136–40.Google Scholar
  95. 95.
    Saxon E, Armstrong JI, Bertozzi CR. A “traceless” Staudinger ligation of the chemoselective synthesis of amide bonds. Org Lett. 2000;2(14):2141–3.PubMedGoogle Scholar
  96. 96.
    Saxon E, Bertozzi CR. Cell surface engineering by a modified Staudinger reaction. Science. 2000;287(5460):2007–10.PubMedGoogle Scholar
  97. 97.
    Watzke A, Kohn M, Gutierrez-Rodriguez M, Wacker R, Schroder H, Breinbauer R, et al. Site-selective protein immobilization by staudinger ligation. Angew Chem Int Ed. 2006;45(9):1408–12.Google Scholar
  98. 98.
    Kiick KL, Saxon E, Tirrell DA, Bertozzi CR. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci USA. 2002;99(1):19–24.PubMedGoogle Scholar
  99. 99.
    Link AJ, Vink MK, Tirrell DA. Presentation and detection of azide functionality in bacterial cell surface proteins. J Am Chem Soc. 2004;126(34):10598–602.PubMedGoogle Scholar
  100. 100.
    Kalia J, Raines RT. Reactivity of intein thioesters: appending a functional group to a protein. Chembiochem. 2006;7(9):1375–83.PubMedGoogle Scholar
  101. 101.
    Lin PC, Ueng SH, Tseng MC, Ko JL, Huang KT, Yu SC, et al. Site-specific protein modification through Cu(I)-catalyzed 1, 2, 3-triazole formation and its implementation in protein microarray fabrication. Angew Chem Int Ed. 2006;45(26):4286–90.Google Scholar
  102. 102.
    Gauchet C, Labadie GR, Poulter CD. Regio- and chemoselective covalent immobilization of proteins through unnatural amino acids. J Am Chem Soc. 2006;128(29):9274–5.PubMedGoogle Scholar
  103. 103.
    Duckworth BP, Xu J, Taton TA, Guo A, Distefano MD. Site-specific, covalent attachment of proteins to a solid surface. Bioconjug Chem. 2006;17(4):967–74.PubMedGoogle Scholar
  104. 104.
    Taki M, Sisido M. Leucyl/phenylalanyl(L/F)-tRNA-protein transferase-mediated aminoacyl transfer of a nonnatural amino acid to the N-terminus of peptides and proteins and subsequent functionalization by bioorthogonal reactions. Biopolymers. 2007;88(2):263–71.PubMedGoogle Scholar
  105. 105.
    Watanabe K, Toh Y, Suto K, Shimizu Y, Oka N, Wada T, et al. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature. 2007;449(7164):867–71.PubMedGoogle Scholar
  106. 106.
    Ebisu K, Tateno H, Kuroiwa H, Kawakami K, Ikeuchi M, Hirabayashi J, et al. N-terminal specific point-immobilization of active proteins by the one-pot NEXT-A method. Chembiochem. 2009;10(15):2460–4.PubMedGoogle Scholar
  107. 107.
    Connor RE, Piatkov K, Varshavsky A, Tirrell DA. Enzymatic N-terminal addition of noncanonical amino acids to peptides and proteins. Chembiochem. 2008;9(3):366–9.PubMedGoogle Scholar
  108. 108.
    Codelli JA, Baskin JM, Agard NJ, Bertozzi CR. Second-generation difluorinated cyclooctynes for copper-free click chemistry. J Am Chem Soc. 2008;130(34):11486–93.PubMedGoogle Scholar
  109. 109.
    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, et al. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci USA. 2007;104(43):16793–7.PubMedGoogle Scholar
  110. 110.
    Ning X, Guo J, Wolfert MA, Boons GJ. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angew Chem Int Ed. 2008;47(12):2253–5.Google Scholar
  111. 111.
    Govindaraju T, Jonkheijm P, Gogolin L, Schroeder H, Becker CF, Niemeyer CM, et al. Surface immobilization of biomolecules by click sulfonamide reaction. Chem Commun (Camb). 2008;(32):3723–5.Google Scholar
  112. 112.
    Hodneland CD, Lee YS, Min DH, Mrksich M. Supramolecular chemistry and self-assembly special feature: selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc Natl Acad Sci USA. 2002;99(8):5048–52.PubMedGoogle Scholar
  113. 113.
    Mannesse ML, Boots JW, Dijkman R, Slotboom AJ, van der Hijden HT, Egmond MR, et al. Phosphonate analogues of triacylglycerols are potent inhibitors of lipase. Biochim Biophys Acta. 1995;1259(1):56–64.PubMedGoogle Scholar
  114. 114.
    Kwon Y, Han Z, Karatan E, Mrksich M, Kay BK. Antibody arrays prepared by cutinase-mediated immobilization on self-assembled monolayers. Anal Chem. 2004;76(19):5713–20.PubMedGoogle Scholar
  115. 115.
    Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci USA. 2004;101(27):9955–9.PubMedGoogle Scholar
  116. 116.
    Sielaff I, Arnold A, Godin G, Tugulu S, Klok HA, Johnsson K. Protein function microarrays based on self-immobilizing and self-labeling fusion proteins. Chembiochem. 2006;7(1):194–202.PubMedGoogle Scholar
  117. 117.
    Lew BM, Mills KV, Paulus H. Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem. 1998;273(26):15887–90.PubMedGoogle Scholar
  118. 118.
    Perler FB. A natural example of protein trans-splicing. Trends Biochem Sci. 1999;24(6):209–11.PubMedGoogle Scholar
  119. 119.
    Berrade L, Kwon Y, Camarero JA. Photomodulation of protein trans-splicing through backbone photocaging of the DnaE split intein. Chembiochem. 2010;cbic_201000157.Google Scholar
  120. 120.
    Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science. 1991;251(4995):767–73.PubMedGoogle Scholar
  121. 121.
    He M, Stoevesandt O, Palmer EA, Khan F, Ericsson O, Taussig MJ. Printing protein arrays from DNA arrays. Nat Methods. 2008;5(2):175–7.PubMedGoogle Scholar
  122. 122.
    Endoh T, Kanai T, Sato YT, Liu DV, Yoshikawa K, Atomi H, et al. Cell-free protein synthesis at high temperatures using the lysate of a hyperthermophile. J Biotechnol. 2006;126(2):186–95.PubMedGoogle Scholar
  123. 123.
    Ozawa K, Wu PS, Dixon NE, Otting G. N-Labelled proteins by cell-free protein synthesis. Strategies for high-throughput NMR studies of proteins and protein-ligand complexes. FEBS J. 2006;273(18):4154–9.PubMedGoogle Scholar
  124. 124.
    Ohta A, Yamagishi Y, Suga H. Synthesis of biopolymers using genetic code reprogramming. Curr Opin Chem Biol. 2008;12(2):159–67.PubMedGoogle Scholar
  125. 125.
    Goto Y, Ohta A, Sako Y, Yamagishi Y, Murakami H, Suga H. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem Biol. 2008;3(2):120–9.PubMedGoogle Scholar
  126. 126.
    Palmer E, Liu H, Khan F, Taussig MJ, He M. Enhanced cell-free protein expression by fusion with immunoglobulin Ckappa domain. Protein Sci. 2006;15(12):2842–6.PubMedGoogle Scholar
  127. 127.
    He M, Taussig MJ. Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic Acids Res. 2001;29(15):E73–3.PubMedGoogle Scholar
  128. 128.
    Angenendt P, Kreutzberger J, Glokler J, Hoheisel JD. Generation of high density protein microarrays by cell-free in situ expression of unpurified PCR products. Mol Cell Proteomics. 2006;5(9):1658–66.PubMedGoogle Scholar
  129. 129.
    Ramachandran N, Hainsworth E, Demirkan G, LaBaer J. On-chip protein synthesis for making microarrays. Methods Mol Biol. 2006;328:1–14.PubMedGoogle Scholar
  130. 130.
    Tao SC, Zhu H. Protein chip fabrication by capture of nascent polypeptides. Nat Biotechnol. 2006;24(10):1253–4.PubMedGoogle Scholar
  131. 131.
    Ray S, Mehta G, Srivastava S. Label-free detection techniques for protein microarrays: prospects, merits and challenges. Proteomics. 2010;10(4):731–48.PubMedGoogle Scholar
  132. 132.
    Schweitzer B, Wiltshire S, Lambert J, O’Malley S, Kukanskis K, Zhu Z, et al. Inaugural article: immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc Natl Acad Sci USA. 2000;97(18):10113–9.PubMedGoogle Scholar
  133. 133.
    Schweitzer B, Roberts S, Grimwade B, Shao W, Wang M, Fu Q, et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat Biotechnol. 2002;20(4):359–65.PubMedGoogle Scholar
  134. 134.
    Martin K, Steinberg TH, Cooley LA, Gee KR, Beechem JM, Patton WF. Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics. 2003;3(7):1244–55.PubMedGoogle Scholar
  135. 135.
    Ojida A, Mito-oka Y, Sada K, Hamachi I. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors. J Am Chem Soc. 2004;126(8):2454–63.PubMedGoogle Scholar
  136. 136.
    Salisbury CM, Maly DJ, Ellman JA. Peptide microarrays for the determination of protease substrate specificity. J Am Chem Soc. 2002;124(50):14868–70.PubMedGoogle Scholar
  137. 137.
    Zhu Q, Uttamchandani M, Li D, Lesaicherre ML, Yao SQ. Enzymatic profiling system in a small-molecule microarray. Org Lett. 2003;5(8):1257–60.PubMedGoogle Scholar
  138. 138.
    Chen GY, Uttamchandani M, Zhu Q, Wang G, Yao SQ. Developing a strategy for activity-based detection of enzymes in a protein microarray. Chembiochem. 2003;4(4):336–9.PubMedGoogle Scholar
  139. 139.
    Takahashi M, Nokihara K, Mihara H. Construction of a protein-detection system using a loop peptide library with a fluorescence label. Chem Biol. 2003;10(1):53–60.PubMedGoogle Scholar
  140. 140.
    Usui K, Takahashi M, Nokihara K, Mihara H. Peptide arrays with designed alpha-helical structures for characterization of proteins from FRET fingerprint patterns. Mol Divers. 2004;8(3):209–18.PubMedGoogle Scholar
  141. 141.
    Schweitzer B, Predki P, Snyder M. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics. 2003;3(11):2190–9.PubMedGoogle Scholar
  142. 142.
    Yu X, Xu D, Cheng Q. Label-free detection methods for protein microarrays. Proteomics. 2006;6(20):5493–503.PubMedGoogle Scholar
  143. 143.
    Chen L, Fatima S, Peng J, Leng X. SELDI protein chip technology for the detection of serum biomarkers for liver disease. Protein Pept Lett. 2009;16(5):467–72.PubMedGoogle Scholar
  144. 144.
    Poon TC. Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices. Expert Rev Proteomics. 2007;4(1):51–65.PubMedGoogle Scholar
  145. 145.
    Kozak KR, Su F, Whitelegge JP, Faull K, Reddy S, Farias-Eisner R. Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics. 2005;5(17):4589–96.PubMedGoogle Scholar
  146. 146.
    Malik G, Rojahn E, Ward MD, Gretzer MB, Partin AW, Semmes OJ, et al. SELDI protein profiling of dunning R-3327 derived cell lines: identification of molecular markers of prostate cancer progression. Prostate. 2007;67(14):1565–75.PubMedGoogle Scholar
  147. 147.
    Lebrecht A, Boehm D, Schmidt M, Koelbl H, Grus FH. Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry to detect breast cancer markers in tears and serum. Cancer Genomics Proteomics. 2009;6(2):75–83.PubMedGoogle Scholar
  148. 148.
    Schmidt M, Hasenclever D, Schaeffer M, Boehm D, Cotarelo C, Steiner E, et al. Prognostic effect of epithelial cell adhesion molecule overexpression in untreated node-negative breast cancer. Clin Cancer Res. 2008;14(18):5849–55.PubMedGoogle Scholar
  149. 149.
    Albrethsen J, Bogebo R, Gammeltoft S, Olsen J, Winther B, Raskov H. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study. BMC Cancer. 2005;5:8.PubMedGoogle Scholar
  150. 150.
    Orvisky E, Drake SK, Martin BM, Abdel-Hamid M, Ressom HW, Varghese RS, et al. Enrichment of low molecular weight fraction of serum for MS analysis of peptides associated with hepatocellular carcinoma. Proteomics. 2006;6(9):2895–902.PubMedGoogle Scholar
  151. 151.
    McDonnell JM. Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr Opin Chem Biol. 2001;5(5):572–7.PubMedGoogle Scholar
  152. 152.
    Jung SO, Ro HS, Kho BH, Shin YB, Kim MG, Chung BH. Surface plasmon resonance imaging-based protein arrays for high-throughput screening of protein–protein interaction inhibitors. Proteomics. 2005;5(17):4427–31.PubMedGoogle Scholar
  153. 153.
    Campbell CT, Kim G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials. 2007;28(15):2380–92.PubMedGoogle Scholar
  154. 154.
    Watanabe S, Usui K, Tomizaki KY, Kajikawa K, Mihara H. Anomalous reflection of gold applicable for a practical protein-detecting chip platform. Mol Biosyst. 2005;1(5–6):363–5.PubMedGoogle Scholar
  155. 155.
    Watanabe S, Tomizaki KY, Takahashi T, Usui K, Kajikawa K, Mihara H. Interactions between peptides containing nucleobase amino acids and T7 phages displaying S. cerevisiae proteins. Biopolymers. 2007;88(2):131–40.PubMedGoogle Scholar
  156. 156.
    Kaushansky A, Gordus A, Budnik BA, Lane WS, Rush J, MacBeath G. System-wide investigation of ErbB4 reveals 19 sites of Tyr phosphorylation that are unusually selective in their recruitment properties. Chem Biol. 2008;15(8):808–17.PubMedGoogle Scholar
  157. 157.
    Gong W, He K, Covington M, Dinesh-Kumar SP, Snyder M, Harmer SL, et al. The development of protein microarrays and their applications in DNA-protein and protein–protein interaction analyses of Arabidopsis transcription factors. Mol Plant. 2008;1(1):27–41.PubMedGoogle Scholar
  158. 158.
    Zhu H, Hu S, Jona G, Zhu X, Kreiswirth N, Willey BM, et al. Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc Natl Acad Sci USA. 2006;103(11):4011–6.PubMedGoogle Scholar
  159. 159.
    Huang J, Zhu H, Haggarty SJ, Spring DR, Hwang H, Jin F, et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA. 2004;101(47):16594–9.PubMedGoogle Scholar
  160. 160.
    Sokolov BP, Cadet JL. Methamphetamine causes alterations in the MAP kinase-related pathways in the brains of mice that display increased aggressiveness. Neuropsychopharmacology. 2006;31(5):956–66.PubMedGoogle Scholar
  161. 161.
    Yam CM, Deluge M, Tang D, Kumar A, Cai C. Preparation, characterization, resistance to protein adsorption, and specific avidin-biotin binding of poly(amidoamine) dendrimers functionalized with oligo(ethylene glycol) on gold. J Colloid Interface Sci. 2006;296(1):118–30.PubMedGoogle Scholar
  162. 162.
    Cha T, Guo A, Zhu XY. Enzymatic activity on a chip: the critical role of protein orientation. Proteomics. 2005;5(2):416–9.PubMedGoogle Scholar
  163. 163.
    George N, Pick H, Vogel H, Johnsson N, Johnsson K. Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc. 2004;126(29):8896–7.PubMedGoogle Scholar
  164. 164.
    Juillerat A, Heinis C, Sielaff I, Barnikow J, Jaccard H, Kunz B, et al. Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells. Chembiochem. 2005;6(7):1263–9.PubMedGoogle Scholar
  165. 165.
    Nath N, Hurst R, Hook B, Meisenheimer P, Zhao KQ, Nassif N, et al. Improving protein array performance: focus on washing and storage conditions. J Proteome Res. 2008;7(10):4475–82.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Luis Berrade
    • 1
  • Angie E. Garcia
    • 1
  • Julio A. Camarero
    • 1
  1. 1.Department of Pharmacology and Pharmaceutical Sciences School of PharmacyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations