Advertisement

Pharmaceutical Research

, Volume 28, Issue 4, pp 934–937 | Cite as

The Phage Therapy Paradigm: Prêt-à-Porter or Sur-mesure?

  • Jean-Paul Pirnay
  • Daniel De Vos
  • Gilbert Verbeken
  • Maia Merabishvili
  • Nina Chanishvili
  • Mario Vaneechoutte
  • Martin Zizi
  • Geert Laire
  • Rob Lavigne
  • Isabelle Huys
  • Guy Van den Mooter
  • Angus Buckling
  • Laurent Debarbieux
  • Flavie Pouillot
  • Joana Azeredo
  • Elisabeth Kutter
  • Alain Dublanchet
  • Andrzej Górski
  • Revaz Adamia
Commentary

The present opinion is the result of discussions on the future of phage therapy (personalized or large-scale uniform therapy?) during the first International Congress on Viruses of Microbes, held at the Institut Pasteur in Paris on June 21–25, 2010.

Antibiotics are becoming ineffective as important bacterial pathogens evolve to outsmart them. Yet the antibiotic pipeline is running dry with only a few new antibacterial drugs expected to make it to the market in the foreseeable future. Bacteria that are resistant to all available antibacterial drugs, so-called superbugs, are emerging worldwide. Evolutionary ecology might inform practical attempts to bring these pathogens under stronger human control (1).

In this context, various laboratories worldwide and a handful of small pharmaceutical companies are turning to (bacterio)phages (2). Phages are natural viruses that specifically infect bacteria. They are (among) the most abundant and ubiquitous lifelike entities on Earth and coevolve...

KEY WORDS

antibiotic resistance bacterial infection bacteriophages drugs phage therapy 

REFERENCES

  1. 1.
    Williams PD. Darwinian interventions: taming pathogens through evolutionary ecology. Trends Parasitol. 2010;26:83–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Thiel K. Old dogma, new tricks—21st Century phage therapy. Nat Biotechnol. 2004;22:31–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Sulakvelidze A, Alavidze Z, Morris Jr JG. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45:649–59.PubMedCrossRefGoogle Scholar
  4. 4.
    Chanishvili N, Sharp R. Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia. A literature review of the practical application of bacteriophage research. Tbilisi: Eliava Foundation; 2009.Google Scholar
  5. 5.
    Górski A, Miedzybrodzki R, Borysowski J, Weber-Dabrowska B, Lobocka M, Fortuna W, et al. Bacteriophage therapy for the treatment of infections. Curr Opin Investig Drugs. 2009;10:766–74.PubMedGoogle Scholar
  6. 6.
    Verbeken G, De Vos D, Vaneechoutte M, Merabishvili M, Zizi M, Pirnay J-P. European regulatory conundrum of phage therapy. Future Microbiol. 2007;2:485–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, et al. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol. 2010;11:69–86.PubMedCrossRefGoogle Scholar
  8. 8.
    Merabishvili M, Pirnay J-P, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE. 2009;4:e4944.PubMedCrossRefGoogle Scholar
  9. 9.
    Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci. 2002;269:931–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Wood JM, Levandowski RA. The influenza vaccine licensing process. Vaccine. 2003;21:1786–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Akst J. Key cancer patents killed. http://www.the-scientist.com/blog/display/57265/ (accessed 19/10/10), part of The Scientist. http://www.the-scientist.com/ (accessed on 19/10/10).
  12. 12.
    Levin BR, Bull JJ. Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol. 2004;2:166–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jean-Paul Pirnay
    • 1
  • Daniel De Vos
    • 1
  • Gilbert Verbeken
    • 1
  • Maia Merabishvili
    • 1
    • 2
    • 3
  • Nina Chanishvili
    • 2
  • Mario Vaneechoutte
    • 3
  • Martin Zizi
    • 4
    • 5
  • Geert Laire
    • 6
  • Rob Lavigne
    • 7
  • Isabelle Huys
    • 8
  • Guy Van den Mooter
    • 9
  • Angus Buckling
    • 10
  • Laurent Debarbieux
    • 11
  • Flavie Pouillot
    • 12
  • Joana Azeredo
    • 13
  • Elisabeth Kutter
    • 14
  • Alain Dublanchet
    • 15
  • Andrzej Górski
    • 16
  • Revaz Adamia
    • 2
  1. 1.Laboratory for Molecular and Cellular Technology Burn Wound CentreQueen Astrid Military HospitalBrusselsBelgium
  2. 2.Eliava Institute of BacteriophageMicrobiology and VirologyTbilisiGeorgia
  3. 3.Laboratory of Bacteriology Research, Faculty of MedicineGhent UniversityGhentBelgium
  4. 4.Department of PhysiologyFree University BrusselsBrusselsBelgium
  5. 5.Section Health of the Division Well-Being (Belgian Defence Staff)Queen Astrid Military HospitalBrusselsBelgium
  6. 6.Office of the Surgeon GeneralBelgian DefenceEvereBelgium
  7. 7.Laboratory of Gene TechnologyKatholieke Universiteit LeuvenLeuvenBelgium
  8. 8.Faculty of Law, Centre for Intellectual RightsCatholic University of LeuvenLeuvenBelgium
  9. 9.Laboratory of Pharmacotechnology and BiopharmacyCatholic University of LeuvenLeuvenBelgium
  10. 10.Department of ZoologyUniversity of OxfordOxfordUK
  11. 11.Department of Microbiology Molecular Biology of the Gene in Extremophiles UnitInstitut PasteurParisFrance
  12. 12.Pherecydes PharmaRomainvilleFrance
  13. 13.Institute for Biotechnology & Bioengineering Centre of Biological EngineeringUniversidade do MinhoBragaPortugal
  14. 14.Phage Biology LabThe Evergreen State CollegeOlympiaUSA
  15. 15.Laboratoire de MicrobiologieCentre Hospitalier Intercommunal de Villeneuve-Saint-GeorgesVilleneuve Saint-GeorgesFrance
  16. 16.Transplantation Institute, The Medical University of Warsaw Institute of Immunology and Experimental TherapyPolish Academy of Sciences WroclawWroclawPoland

Personalised recommendations