Pharmaceutical Research

, Volume 27, Issue 12, pp 2753–2765 | Cite as

Delivery of Water-Soluble Drugs Using Acoustically Triggered Perfluorocarbon Double Emulsions

  • Mario L. Fabiilli
  • James A. Lee
  • Oliver D. Kripfgans
  • Paul L. Carson
  • J. Brian Fowlkes
Research Paper



Ultrasound can be used to release a therapeutic payload encapsulated within a perfluorocarbon (PFC) emulsion via acoustic droplet vaporization (ADV), a process whereby the PFC phase is vaporized and the agent is released. ADV-generated microbubbles have been previously used to selectively occlude blood vessels in vivo. The coupling of ADV-generated drug delivery and occlusion has therapeutically synergistic potentials.


Micron-sized, water-in-PFC-in-water (W1/PFC/W2) emulsions were prepared in a two-step process using perfluoropentane (PFP) or perfluorohexane (PFH) as the PFC phase. Fluorescein or thrombin was contained in the W1 phase.


Double emulsions containing fluorescein in the W1 phase displayed a 5.7±1.4-fold and 8.2±1.3-fold increase in fluorescein mass flux, as measured using a Franz diffusion cell, after ADV for the PFP and PFH emulsions, respectively. Thrombin was stably retained in four out of five double emulsions. For three out of five formulations tested, the clotting time of whole blood decreased, in a statistically significant manner (p < 0.01), when incubated with thrombin-loaded emulsions exposed to ultrasound compared to emulsions not exposed to ultrasound.


ADV can be used to spatially and temporally control the delivery of water-soluble compounds formulated in PFC double emulsions. Thrombin release could extend the duration of ADV-generated, microbubble occlusions.


acoustic droplet vaporization double emulsion embolization perfluorocarbon thrombin ultrasound vascular occlusion 



activated clotting time


acoustic droplet vaporization




international units


polyethylene glycol








pulse repetition period






  1. 1.
    Dayton PA, Zhao S, Bloch SH, Schumann P, Penrose K, Matsunaga TO, et al. Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy. Mol Imaging. 2006;5(3):160–74.PubMedGoogle Scholar
  2. 2.
    Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204.CrossRefPubMedGoogle Scholar
  3. 3.
    Laing ST, Kim H, Kopechek JA, Parikh D, Huang S, Klegerman ME, et al. Ultrasound-mediated delivery of echogenic immunoliposomes to porcine vascular smooth muscle cells in vivo. J Liposome Res. 2010;20(2):160–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32(8):962–90.CrossRefGoogle Scholar
  5. 5.
    Unger EC, Porter T, Culp W, LaBell R, Matsunaga T, Zutshi R. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev. 2004;56(9):1291–314.CrossRefPubMedGoogle Scholar
  6. 6.
    Eisenbrey JR, Burnstein OM, Kambhamptai R, Forsberg F, Liu J, Wheatley M. Development and optimization of doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery. J Control Release. 2010;143(1):38–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Lentacker I, Geers B, Demeester J, Smedt SCD, Sanders NN. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubucin delivery: cytotoxicity and mechanisms involved. Mol Ther. 2010;18(1):101–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Liang H, Tang J, Halliwell M. Sonoporation, drug delivery, and gene therapy. Proc Inst Mech Eng H. 2010;224(H2):343–61.PubMedGoogle Scholar
  9. 9.
    Ren JL, Xu CS, Zhou ZY, Zhang Y, Li XS, Zheng YY, et al. A novel ultrasound microbubble carrying gene and tat peptide: preparation and characterization. Acad Radiol. 2009;16(12):1457–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Datta S, Coussios CC, Ammi AY, Mast TD, de Courten-Myers GM, Holland CK. Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent. Ultrasound Med Biol. 2008;34(9):1421–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Yang FY, Liu SH, Ho FM, Chang CH. Effect of ultrasound contrast agent dose on the disruption of focused-ultrasound-induced blood-brain barrier disruption. J Acoust Soc Am. 2009;126(6):3344–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Dayton PA, Ferrara KW. Targeted imaging using ultrasound. J Magn Reson Imaging. 2002;16(4):362–77.CrossRefPubMedGoogle Scholar
  13. 13.
    Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev. 2008;60(10):1153–66.CrossRefPubMedGoogle Scholar
  14. 14.
    Tinkov S, Bekeredjian R, Winter G, Coester C. Microbubbles as ultrasound triggered drug carriers. J Pharm Sci. 2009;98(6):1935–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Diaz-Lopez R, Tsapis N, Fattal E. Liquid perfluorocarbons as contrast agents for ultrasonography and 19F-MRI. Pharm Res. 2010;27(1):1–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Riess JG. Oxygen carriers (“blood substitutes”)—raison d’etre, chemistry, and some physiology. Chem Rev. 2001;101(9):2797–919.CrossRefPubMedGoogle Scholar
  17. 17.
    Fabiilli ML, Haworth KJ, Sebastian IE, Kripfgans OD, Carson PL, Fowlkes JB. Delivery of chlorambucil using acoustically-triggered, perfluoropentane emulsions. Ultrasound Med Biol. 2010;36(8):1364–75.CrossRefPubMedGoogle Scholar
  18. 18.
    Fang JY, Hung CF, Liao MH, Chien CC. A study of the formulation design of acoustically active lipospheres as carriers for drug delivery. Eur J Pharm Biopharm. 2007;67(1):67–75.CrossRefPubMedGoogle Scholar
  19. 19.
    Fang JY, Hung CF, Hua SC, Hwang TL. Acoustically active pefluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytoxicity against cancer cells. Ultrasonics. 2009;49(1):39–46.CrossRefPubMedGoogle Scholar
  20. 20.
    Hwang TL, Lin YJ, Chi CH, Huang TH, Fang JY. Development and evaluation of perfluorocarbon nanobubbles for apomorphine delivery. J Pharm Sci. 2009;98(10):3735–47.CrossRefPubMedGoogle Scholar
  21. 21.
    Apfel RE. Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis. Patent 5,840,276, Apfel Enterprises, Inc., November 1998.Google Scholar
  22. 22.
    Giesecke T, Hynynen K. Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med Biol. 2003;29(9):1359–65.CrossRefPubMedGoogle Scholar
  23. 23.
    Kripfgans OD, Fowlkes JB, Miller DL, Eldevik OP, Carson PL. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol. 2000;26(7):1177–89.CrossRefPubMedGoogle Scholar
  24. 24.
    Kawabata K, Sugita N, Yoshikawa H, Azuma T, Umemura S. Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting. Jpn J Appl Phys. 2005;44(6B):4548–52.CrossRefGoogle Scholar
  25. 25.
    Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release. 2009;138(2):268–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Kripfgans OD, Fowlkes JB, Woydt M, Eldevik OP, Carson PL. In vivo droplet vaporization for occlusion therapy and phase aberration correction. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(2):726–38.CrossRefPubMedGoogle Scholar
  27. 27.
    Kripfgans OD, Orifici CM, Carson PL, Ives KA, Eldevik OP, Fowlkes JB. Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: A kidney study. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52(7):1101–10.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang M, Fabiilli ML, Haworth KJ, Fowlkes JB, Kripfgans OD, Roberts W, et al. Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol. 2010;36(10):1691–703.CrossRefPubMedGoogle Scholar
  29. 29.
    Arima K, Yamakado K, Kinbara H, Nakatsuka A, Takeda K, Sugimura Y. Percutaneous radiofrequency ablation with transarterial embolization is useful for treatment of stage 1 renal cell carcinoma with surgical risk: results at 2-year mean follow up. Int J Urol. 2007;14(7):585–90.CrossRefPubMedGoogle Scholar
  30. 30.
    Wu F, Wang Z, Chen W, Zou J, Bai J, Zhu H, et al. Advanced hepatocellular carcinoma: treatment with high-intensity focused ultrasound ablation combined with transcatheter arterial embolization. Radiology. 2005;235(2):659–67.CrossRefPubMedGoogle Scholar
  31. 31.
    Charbonnet P, Toman J, Buhler L, Vermeulen B, Morel P, Becker C, et al. Treatment of gastrointestinal hemorrhage. Abdom Imaging. 2005;30(6):719–26.CrossRefPubMedGoogle Scholar
  32. 32.
    Petroianu A. Arterial embolization for hemorrhage caused by hepatic arterial injury. Dig Dis Sci. 2007;52(10):2478–81.CrossRefPubMedGoogle Scholar
  33. 33.
    Debrun G, Aletich V, Ausman J, Charbel F, Dujovny M. Embolization of the nidus of brain arteriovenous malformations with n-butyl cyanoacrylate. Neurosurgery. 1997;40(1):112–20.CrossRefPubMedGoogle Scholar
  34. 34.
    Taki W, Yonekawa Y, Iwata H, Uno A, Yamashita K, Amemiya H. A new liquid material for embolization of arteriovenous-malformations. AMJR Am J Neuroradiol. 1990;11(1):163–8.Google Scholar
  35. 35.
    Yamashita K, Taki W, Iwata H, Kikuchi H. A cationic polymer, Eudragit-E as a new liquid embolic material for arteriovenous malformations. Neuroradiology. 1996;38 Suppl 1:S151–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Krueger K, Zaehringer M, Strohe D, Struetzer H, Boecker J, Lackner K. Postcatheterization pseudoaneurysm: results of US-guided percutaneous thrombin injection in 240 patients. Radiology. 2005;236(3):1104–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Paulson EK, Sheafor DH, Kliewer MA, Nelson RC, Eisenberg LB, Sebastian MW, et al. Treatment of iatrogenic femoral arterial pseudoaneurysms: comparison of US-guided thrombin injection with compression repair. Radiology. 2000;215(2):403–8.PubMedGoogle Scholar
  38. 38.
    Holtze C, Rowat AC, Aggresti JJ, Hutchinson JB, Angile FE, Schmitz CHJ, et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip. 2008;8(10):1632–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Tonelli C, Di Meo A, Fontana S, Russo A. Perfluoropolyether functional oligomers: unusual reactivity in organic chemistry. J Fluor Chem. 2002;118(1–2):107–21.CrossRefGoogle Scholar
  40. 40.
    Zhu S, Edmonds WF, Hillmyer MA, Lodge TP. Synthesis and self-assembly of highly incompatible polybutadiene-poly(hexafluoropropylene oxide) diblock copolymers. J Polym Sci B Polym Phys. 2005;43(24):3685–94.CrossRefGoogle Scholar
  41. 41.
    Benichou A, Aserin A. Recent developments in O/W/O multiple emulsions. In: Aserin A, editor. Multiple emulsions: technology and applications. Hoboken: Wiley-Interscience; 2008. p. 165–207.Google Scholar
  42. 42.
    Fabiilli ML, Haworth KJ, Fakhri NH, Kripfgans OD, Carson PL, Fowlkes JB. The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(5):1006–17.CrossRefPubMedGoogle Scholar
  43. 43.
    Kripfgans OD, Fabiilli ML, Carson PL, Fowlkes JB. On the acoustic vaporization of micrometer-sized droplets. J Acoust Soc Am. 2004;116(1):272–81.CrossRefPubMedGoogle Scholar
  44. 44.
    Gibson J, Rees S, McManus T, Scheitlin W. A citrate-phosphate-dextrose solution for the preservation of human blood. Am J Clin Pathol. 1957;28(6):569–78.PubMedGoogle Scholar
  45. 45.
    Edwards C, Heptinstall S, Lowe K. Pluronic F-68 inhibits agonist-induced platelet aggregation in whole human blood in vitro. Artif Cells Blood Substit Immobil Biotechnol. 1998;26(5):441–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Moghimi SM, Hunter AC. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 2000;18(10):412–20.CrossRefPubMedGoogle Scholar
  47. 47.
    Florence AT, Whitehill D. The formulation and stability of multiple emulsions. Int J Pharm. 1982;11(4):277–308.CrossRefGoogle Scholar
  48. 48.
    Matsumoto S, Kita Y, Yonezawa D. An attempt at preparing water-in-oil-in-water multiple-phase emulsions. J Colloid Interface Sci. 1976;57(2):353–61.CrossRefGoogle Scholar
  49. 49.
    Zhang X, Liu X, Gu D, Zhou W, Xie T, Mo Y. Rheological models for xanthan gum. J Food Eng. 1996;27(2):203–9.CrossRefGoogle Scholar
  50. 50.
    Putney SD. Encapsulation of proteins for improved delivery. Curr Opin Chem Biol. 1998;2(4):548–52.CrossRefPubMedGoogle Scholar
  51. 51.
    Le Borgne SL, Graber M. Amidase activity and thermal stability of human thrombin. Appl Biochem Biotechnol. 1994;48(2):125–35.CrossRefPubMedGoogle Scholar
  52. 52.
    Papadopoulou MV, Ji M, Bloomer WD. NLCQ-1, a novel hypoxic cyototoxin: potentiation of melphalan, cisDDP and cyclophosphamide in vivo. Int J Radiat Oncol Biol Phys. 1998;42(4):775–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Courrier HM, Vandamme TF, Krafft MP. Reverse water-in-fluorocarbon emulsions and microemulsions obtained with a fluorinated surfactant. Colloids Surf A Physiochem Eng Asp. 2004;244(1–3):141–8.CrossRefGoogle Scholar
  54. 54.
    Jeon S, Lee J, Andrade J, de Gennes P. Protein-surface interactions in the presence of polyethylene oxide. J Colloid Interface Sci. 1991;142(1):149–58.CrossRefGoogle Scholar
  55. 55.
    Roach LS, Song H, Ismagilov RF. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal Chem. 2005;77(3):785–96.CrossRefPubMedGoogle Scholar
  56. 56.
    Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, et al. Droplet- based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol. 2008;51(42):427–37.CrossRefGoogle Scholar
  57. 57.
    Jumaa M, Muller BW. The effect of oil components and homogenization conditions on the physiochemical properties and stability of parenteral fat emulsions. Int J Pharm. 1998;163(1):81–9.CrossRefGoogle Scholar
  58. 58.
    Lundblad RL, Bradshaw RA, Gabriel D, Ortel TL, Lawson J, Mann KG. A review of the therapeutic uses of thrombin. Thromb Haemost. 2004;91(5):851–60.PubMedGoogle Scholar
  59. 59.
    Jesty S. The kinetics of inhibition of α-thrombin in human plasma. J Biol Chem. 1986;261(22):10313–8.PubMedGoogle Scholar
  60. 60.
    Chandy T, Das GS, Wilson RF, Rao GH. Development of polylactide microspheres for protein encapsulation and delivery. J Appl Polym Sci Symp. 2002;86(5):1285–95.CrossRefGoogle Scholar
  61. 61.
    Ziv O, Lublin-Tennenbaum T, Margel S. Synthesis and characterization of thrombin conjugated γ-Fe2O3 magnetic nanoparticles for hemostasis. Adv Eng Mat. 2009;11(12):B251–60.CrossRefGoogle Scholar
  62. 62.
    Ziv-Polat O, Topaz M, Brosh T, Margel S. Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials. 2010;31(4):741–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Marchioni C, Riccardi E, Spinelli S, dell’Unto F, Grimaldi P, Bedini A, et al. Structural changes induced in proteins by therapeutic ultrasounds. Ultrasonics. 2009;49(6–7):569–76.CrossRefPubMedGoogle Scholar
  64. 64.
    Oliva A, Santovena A, Farina J, Llabres M. Effect of high shear rate on stability of proteins: kinetic study. J Pharm Biomed Anal. 2003;33(2):145–55.CrossRefPubMedGoogle Scholar
  65. 65.
    Jiao J, Burgess DJ. Multiple emulsion stability: pressure balance and interfacial film strength. In: Aserin A, editor. Multiple emulsions: technology and applications. Hoboken: Wiley-Interscience; 2008. p. 1–28.Google Scholar
  66. 66.
    Wolberg AS. Thrombin generation and fibrin clot structure. Blood Rev. 2007;21(3):131–42.CrossRefPubMedGoogle Scholar
  67. 67.
    Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70(1):165–72.PubMedGoogle Scholar
  68. 68.
    Higashi S, Tabata N, Kono K, Maeda Y, Shimizu M, Nakashima T, et al. Size of lipid microdroplets effects results of hepatic arterial chemotherapy with an anticancer agent in water-in-oil-in-water emulsion to hepatocellular carcinoma. J Pharmacol Exp Ther. 1999;289(2):816–9.PubMedGoogle Scholar
  69. 69.
    Taghizadeh M, Asadpour T. Effect of molecular weight on the ultrasonic degradation of poly(vinyl-pyrrolidone). Ultrason Sonochem. 2009;16(2):280–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mario L. Fabiilli
    • 1
    • 2
    • 4
  • James A. Lee
    • 2
  • Oliver D. Kripfgans
    • 1
    • 2
    • 3
  • Paul L. Carson
    • 1
    • 2
  • J. Brian Fowlkes
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of RadiologyUniversity of MichiganAnn ArborUSA
  3. 3.Applied Physics ProgramUniversity of MichiganAnn ArborUSA
  4. 4.Ann ArborUSA

Personalised recommendations