Pharmaceutical Research

, Volume 27, Issue 11, pp 2283–2295 | Cite as

PEG-Functionalized Magnetic Nanoparticles for Drug Delivery and Magnetic Resonance Imaging Applications

  • Murali Mohan Yallapu
  • Susan P. Foy
  • Tapan K. Jain
  • Vinod Labhasetwar
Research Paper



Polyethylene glycol (PEG) functionalized magnetic nanoparticles (MNPs) were tested as a drug carrier system, as a magnetic resonance imaging (MRI) agent, and for their ability to conjugate to an antibody.


An iron oxide core coated with oleic acid (OA) and then with OA-PEG forms a water-dispersible MNP formulation. Hydrophobic doxorubicin partitions into the OA layer for sustained drug delivery. The T1 and T2 MRI contrast properties were determined in vitro and the circulation of the MNPs was measured in mouse carotid arteries. An N-hydroxysuccinimide group (NHS) on the OA-PEG-80 was used to conjugate the amine functional group on antibodies for active targeting in the human MCF-7 breast cancer cell line.


The optimized formulation had a mean hydrodynamic diameter of 184 nm with an ~8 nm iron-oxide core. The MNPs enhance the T2 MRI contrast and have a long circulation time in vivo with 30% relative concentration 50 min post-injection. Doxorubicin-loaded MNPs showed sustained drug release and dose-dependent antiproliferative effects in vitro; the drug effect was enhanced with transferrin antibody-conjugated MNPs.


PEG-functionalized MNPs could be developed as a targeted drug delivery system and MRI contrast agent.


anticancer drugs anti-proliferative effect contrast agent iron-oxide reticuloendothelial system transferrin antibody 



The study reported here is funded by grant R01 EB005822 (to VL) from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health. SPF is a predoctoral student in Cleveland Clinic’s Molecular Medicine Ph.D. Program, which is funded by the “Med into Grad” initiative of the Howard Hughes Medical Institute (

Supplementary material

11095_2010_260_MOESM1_ESM.doc (96 kb)
Supplementary materials(DOC 96 kb)


  1. 1.
    Bulte JW, Kraitchman DL. Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol. 2004;5:567–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Josephson L. Magnetic nanoparticles for MR imaging. US: Springer; 2007.Google Scholar
  3. 3.
    Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17:484–99.CrossRefPubMedGoogle Scholar
  4. 4.
    Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 2000;60:6641–8.PubMedGoogle Scholar
  5. 5.
    Beaven GH, Chen SH, d’Albis A, Gratzer WB. A spectroscopic study of the haemin–human-serum-albumin system. Eur J Biochem. 1974;41:539–46.CrossRefPubMedGoogle Scholar
  6. 6.
    Lehrer SS, Fasman GD. The fluorescence of lysozyme and lysozyme substrate complexes. Biochem Biophys Res Commun. 1966;23:133–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Chipman DM, Grisaro V, Sharon N. The binding of oligosaccharides containing N-acetylglucosamine and N-acetylmuramic acid to lysozyme. The specificity of binding subsites. J Biol Chem. 1967;242:4388–94.PubMedGoogle Scholar
  8. 8.
    Jeffery GH, Bassett J, Mendham J, Denny RC. Vogel’s text book of quantitative chemical analysis. New York: Wiley; 1989.Google Scholar
  9. 9.
    Moffat BA, Reddy GR, McConville P, Hall DE, Chenevert TL, Kopelman RR, et al. A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol Imaging. 2003;2:324–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Yolles S, Aslund B, Morton JF, Olson OT, Rosenberg B. Timed-released depot for anticancer agents. II. Acta Pharm Suec. 1978;15:382–8.PubMedGoogle Scholar
  11. 11.
    Olivier JC, Huertas R, Lee HJ, Calon F, Pardridge WM. Synthesis of pegylated immunonanoparticles. Pharm Res. 2002;19:1137–43.CrossRefPubMedGoogle Scholar
  12. 12.
    Gou ML, Qian ZY, Wang H, Tang YB, Huang MJ, Kan B, et al. Preparation and characterization of magnetic poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) microspheres. J Mater Sci Mater Med. 2007;19:1033–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu X, Kaminski MD, Chen H, Torno M, Taylor L, Rosengart AJ. Synthesis and characterization of highly-magnetic biodegradable poly(d, l-lactide-co-glycolide) nanospheres. J Control Release. 2007;119:52–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Okassa LN, Marchais H, Douziech-Eyrolles L, Herve K, Cohen-Jonathan S, Munnier E, et al. Optimization of iron oxide nanoparticles encapsulation within poly(d, l-lactide-co-glycolide) sub-micron particles. Eur J Pharm Biopharm. 2007;67:31–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Hamoudeh M, Al Faraj A, Canet-Soulas E, Bessueille F, Leonard D, Fessi H. Elaboration of PLLA-based superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int J Pharm. 2007;338:248–57.CrossRefPubMedGoogle Scholar
  16. 16.
    Bhattacharya S, Eckert F, Boyko V, Pich A. Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small. 2007;3:650–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Shen F, Poncet-Legrand C, Somers S, Slade A, Yip C, Duft AM, et al. Properties of a novel magnetized alginate for magnetic resonance imaging. Biotechnol Bioeng. 2003;83:282–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Bonacchi D, Caneschi A, Dorignac D, Falqui A, Gatteschi D, Rovai D, et al. Nanosized iron oxide particles entrapped in pseudo-single crystals gamma-cyclodextrin. Chem Mater. 2004;16:2016–20.CrossRefGoogle Scholar
  19. 19.
    Bonacchi D, Caneschi A, Gatteschi D, Sangregorio C, Sessoli R, Falqui A. Synthesis and characterisation of metal oxides nanoparticles entrapped in cyclodextrin. J Phys Chem Solids. 2004;65:719–22.CrossRefGoogle Scholar
  20. 20.
    Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, et al. Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir. 2004;20:2472–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim DK, Mikhaylova M, Wang FH, Kehr J, Bjelke B, Zhang Y, et al. Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem Mater. 2003;15:4343–51.CrossRefGoogle Scholar
  22. 22.
    Pardoe H, Chua-anusorn W, St. Pierre TG, Dobson J. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. J Magn Magn Mater. 2001;225:41–6.CrossRefGoogle Scholar
  23. 23.
    Lee H, Yu MK, Park S, Moon S, Min JJ, Jeong YY, et al. Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc. 2007;129:12739–45.CrossRefPubMedGoogle Scholar
  24. 24.
    Wan S, Huang J, Guo M, Zhang H, Cao Y, Yan H, et al. Biocompatible superparamagnetic iron oxide nanoparticle dispersions stabilized with poly(ethylene glycol)-oligo(aspartic acid) hybrids. J Biomed Mater Res A. 2007;80:946–54.PubMedGoogle Scholar
  25. 25.
    Lutz JF, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R. One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules. 2006;7:3132–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Xie J, Xu C, Kohler N, Hou Y, Sun S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater. 2007;19:3163–6.CrossRefGoogle Scholar
  27. 27.
    Ditsch A, Laibinis PE, Wang DI, Hatton TA. Controlled clustering and enhanced stability of polymer-coated magnetic nanoparticles. Langmuir. 2005;21:6006–18.CrossRefPubMedGoogle Scholar
  28. 28.
    Weissleder R, Elizondo G, Wittenberg J, Lee AS, Josephson L, Brady TJ. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology. 1990;175:494–8.PubMedGoogle Scholar
  29. 29.
    McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev. 2008;60:1241–51.CrossRefPubMedGoogle Scholar
  30. 30.
    Okuhata Y. Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev. 1999;37:121–37.CrossRefPubMedGoogle Scholar
  31. 31.
    Yigit MV, Mazumdar D, Lu Y. MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem. 2008;19:412–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc. 2005;127:5732–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials. 2008;29:4012–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Bulte JWM, Cuyper MD, Despres D, Frank JA. Preparation, relaxometry, and biokinetics of PEGylated magnetoliposomes as MR contrast agent. J Magn Magn Mater. 1999;194:204–9.CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Kohler N, Zhang MQ. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials. 2002;23:1553–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Arruebo M, Fernandez-Pacheco R, Ibarra MR, Santamaria J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2:22–32.CrossRefGoogle Scholar
  37. 37.
    Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 2000;18:410–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Seo SB, Yang J, Hyung W, Cho EJ, Lee TI, Song YJ, et al. Novel multifunctional PHDCA/PEI nano-drug carriers for simultaneous magnetically targeted cancer therapy and diagnosis via magnetic resonance imaging. Nanotechnology. 2007;18:1–8.CrossRefGoogle Scholar
  39. 39.
    Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharmaceutics. 2008;5:316–27.CrossRefGoogle Scholar
  40. 40.
    Jain TK, Foy SP, Erokwu B, Dimitrijevic S, Flask CA, Labhasetwar V. Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice. Biomaterials. 2009;30:6748–56.CrossRefPubMedGoogle Scholar
  41. 41.
    Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293:483–96.CrossRefGoogle Scholar
  42. 42.
    Jun YW, Lee JH, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed Engl. 2008;47:5122–35.CrossRefPubMedGoogle Scholar
  43. 43.
    Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharmaceutics. 2005;2:194–205.CrossRefGoogle Scholar
  44. 44.
    Kosaka N, Ogawa M, Longmire MR, Choyke PL, Kobayashi H. Multi-targeted multi-color in vivo optical imaging in a model of disseminated peritoneal ovarian cancer. J Biomed Opt. 2009;14:014023.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Murali Mohan Yallapu
    • 1
    • 2
  • Susan P. Foy
    • 1
  • Tapan K. Jain
    • 1
    • 3
  • Vinod Labhasetwar
    • 1
    • 4
  1. 1.Department of Biomedical Engineering/ND-20 Lerner Research InstituteCleveland ClinicClevelandUSA
  2. 2.Cancer Biology Research CenterSanford Research/University of South DakotaSioux FallsUSA
  3. 3.University School of Basic & Applied SciencesGuru Gobind Singh Indraprastha UniversityNew DelhiIndia
  4. 4.Taussig Cancer CenterCleveland ClinicClevelandUSA

Personalised recommendations