Pharmaceutical Research

, Volume 27, Issue 12, pp 2602–2613 | Cite as

Influence of Dosing Schedule on Organ Exposure to Cyclosporin in Pediatric Hematopoietic Stem Cell Transplantation: Analysis with a PBPK Model

  • Cécile Gérard
  • Nathalie Bleyzac
  • Pascal Girard
  • Gilles Freyer
  • Yves Bertrand
  • Michel Tod
Research Paper



Cyclosporin is administered by intermittent infusions (II) or continuous infusions (CI) to prevent acute graft-versus-host disease (aGVHD). Because cyclosporin disposition is nonlinear, organ exposure may be higher after II than after CI, but saturation of receptors must be accounted for. The aim of the study was to compare both types of administration using a mechanistic model.


A physiologically based pharmacokinetic model was developed to estimate cyclosporin exposure and receptor occupancies (RO) in aGVHD target organs and kidneys and to compare these estimations in pediatric patients that received cyclosporin either by II or CI. The relevant biological parameters were based on a clinical study in 2 groups of pediatric patients that received cyclosporin either by II (n = 31) or CI (n = 30).


Simulations showed that the exposure to cyclosporin in the interstitial fluid of aGVHD target organs was greater at day 1 after II than after CI. In kidneys, the opposite order was observed. AUCRO in all organs was greater after CI than after II. The therapeutic index (the ratio of AUCRO in blood to AUCRO in kidneys) was greater with CI than with II.


CI may be slightly more favorable than II for aGVHD prevention.


cyclosporin GVHD hematopoietic stem cell transplantation PBPK modelling 



This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.


  1. 1.
    Welniak LA, Blazar BR, Murphy WJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol. 2007;25:139–70.CrossRefPubMedGoogle Scholar
  2. 2.
    Appelbaum FR. Haematopoietic cell transplantation as immunotherapy. Nature. 2001;411:385–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373:1550–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Bowers LD. Therapeutic monitoring for cyclosporine: difficulties in establishing a therapeutic window. Clin Biochem. 1991;24:81–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Martin P, Bleyzac N, Souillet G, Galambrun C, Bertrand Y, Maire PH, et al. Relationship between CsA trough blood concentration and severity of acute graft-versus-host disease after paediatric stem cell transplantation from matched-sibling or unrelated donors. Bone Marrow Transplant. 2003;32:777–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Martin P, Bleyzac N, Souillet G, Galambrun C, Bertrand Y, Maire PH, et al. Clinical and pharmacological risk factors for acute graft-versus-host disease after paediatric bone marrow transplantation from matched-sibling or unrelated donors. Bone Marrow Transplant. 2003;32:881–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Yee GC, Self SG, McGuire TR, Carlin J, Sanders JE, Deeg HJ. Serum cyclosporine concentration and risk of acute graft-versus-host disease after allogeneic marrow transplantation. N Engl J Med. 1988;319:65–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Przepiorka D, Shapiro S, Schwinghammer TL, Bloom EJ, Rosenfeld CS, Shadduck RK, et al. Cyclosporine and methylprednisolone after allogeneic marrow transplantation: association between low cyclosporine concentration and risk of acute graft-versus-host disease. Bone Marrow Transplant. 1991;7:461–5.PubMedGoogle Scholar
  9. 9.
    Ghalie R, Fitzsimmons WE, Weinstein A, Manson S, Kaizer H. Cyclosporine monitoring improves graft-versus-host disease prophylaxis after bone marrow transplantation. Ann Pharmacother. 1994;28:379–83.PubMedGoogle Scholar
  10. 10.
    Eisner MD, August CS. Impact of donor and recipient characteristics on the development of acute and chronic graft-versus-host disease following pediatric bone marrow transplantation. Bone Marrow Transplant. 1995;15:663–8.PubMedGoogle Scholar
  11. 11.
    Punnett A, Sung L, Price V, Das P, Diezi M, Doyle J, et al. Achievement of target cyclosporine concentrations as a predictor of severe acute graft versus host disease in children undergoing hematopoietic stem cell transplantation and receiving cyclosporine and methotrexate prophylaxis. Ther Drug Monit. 2007;29:750–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Byrne JL, Stainer C, Hyde H, Miflin G, Haynes AP, Bessell EM, et al. Low incidence of acute graft-versus-host disease and recurrent leukaemia in patients undergoing allogeneic haemopoietic stem cell transplantation from sibling donors with methotrexate and dose-monitored cyclosporin A prophylaxis. Bone Marrow Transplant. 1998;22:541–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Carlens S, Aschan J, Remberger M, Dilber M, Ringden O. Low-dose cyclosporine of short duration increases the risk of mild and moderate GVHD and reduces the risk of relapse in HLA-identical sibling marrow transplant recipients with leukaemia. Bone Marrow Transplant. 1999;24:629–35.CrossRefPubMedGoogle Scholar
  14. 14.
    Ruutu T, Niederwieser D, Gratwohl A, Apperley JF. A survey of the prophylaxis and treatment of acute GVHD in Europe: a report of the European Group for Blood and Marrow, Transplantation (EBMT). Chronic Leukaemia Working Party of the EBMT. Bone Marrow Transplant. 1997;19:759–64.CrossRefPubMedGoogle Scholar
  15. 15.
    Hendriks MP, Blijlevens NM, Schattenberg AV, Burger DM, Donnelly JP. Cyclosporine short infusion and C2 monitoring in haematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2006;38:521–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Tanaka C, Kawai R, Rowland M. Physiologically based pharmacokinetics of cyclosporine A: reevaluation of dose-nonlinear kinetics in rats. J Pharmacokinet Biopharm. 1999;27:597–623.CrossRefPubMedGoogle Scholar
  17. 17.
    Kawai R, Mathew D, Tanaka C, Rowland M. Physiologically based pharmacokinetics of cyclosporine A: extension to tissue distribution kinetics in rats and scale-up to human. J Pharmacol Exp Ther. 1998;287:457–68.PubMedGoogle Scholar
  18. 18.
    Dartois C, Freyer G, Michallet M, Henin E, You B, Darlavoix I, et al. Exposure-effect population model of inolimomab, a monoclonal antibody administered in first-line treatment for acute graft-versus-host disease. Clin Pharmacokinet. 2007;46:417–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Bernareggi A, Rowland M. Physiologic modeling of cyclosporin kinetics in rat and man. J Pharmacokinet Biopharm. 1991;19:21–50.CrossRefPubMedGoogle Scholar
  20. 20.
    Kawai R, Lemaire M. Role of blood cell uptake on cyclosporin pharmacokinetics. In: Tillement P, Eckert H, editors. Proceeding of the International Symosium on Blood Binding and Drug Transfer. Paris: EFC; 1993. p. 89–108.Google Scholar
  21. 21.
    Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13:407–84.PubMedGoogle Scholar
  22. 22.
    Niederberger W, Lemaire M, Maurer G, Nussbaumer K, Wagner O. Distribution and binding of cyclosporin in blood and tissues. Transplant Proc. 1983;15:2419–21.Google Scholar
  23. 23.
    Kawai R, Lemaire M, Steimer JL, Bruelisauer A, Niederberger W, Rowland M. Physiologically based pharmacokinetic study on a cyclosporin derivative, SDZ IMM 125. J Pharmacokinet Biopharm. 1994;22:327–65.CrossRefPubMedGoogle Scholar
  24. 24.
    Wagner O, Schreier E, Heitz F, Maurer G. Tissue distribution, disposition, and metabolism of cyclosporine in rats. Drug Metab Dispos. 1987;15:377–83.PubMedGoogle Scholar
  25. 25.
    Kelly P, Kahan BD. Review: metabolism of immunosuppressant drugs. Curr Drug Metab. 2002;3:275–87.CrossRefPubMedGoogle Scholar
  26. 26.
    D’Argenio D, Schumitzky A. ADAPT II User’s guide. Pharmacokinetic/Pharmacodynamic Systems Analysis Software. Los Angeles: Biomedical Simulations Ressource; 1997.Google Scholar
  27. 27.
    Anderson BJ, Holford NH. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008;48:303–32.CrossRefPubMedGoogle Scholar
  28. 28.
    Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59:691–704.CrossRefPubMedGoogle Scholar
  29. 29.
    Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45:1013–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Legg B, Gupta SK, Rowland M. A model to account for the variation in cyclosporin binding to plasma lipids in transplant patients. Ther Drug Monit. 1988;10:20–7.PubMedGoogle Scholar
  31. 31.
    National Cholesterol Education Program (NCEP). highlights of the report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents. Pediatrics. 1992;89:495–501.Google Scholar
  32. 32.
    Girardet J-P. Management of children with hypercholesterolemia. Pédiatrie. 2006;13:104–10.CrossRefGoogle Scholar
  33. 33.
    Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45:931–56.CrossRefPubMedGoogle Scholar
  34. 34.
    Wong SH. Therapeutic drug monitoring for immunosuppressants. Clin Chim Acta. 2001;313:241–53.CrossRefPubMedGoogle Scholar
  35. 35.
    Stein CM, Murray JJ, Wood AJ. Inhibition of stimulated interleukin-2 production in whole blood: a practical measure of cyclosporine effect. Clin Chem. 1999;45:1477–84.PubMedGoogle Scholar
  36. 36.
    Marshall JD, Kearns GL. Developmental pharmacodynamics of cyclosporine. Clin Pharmacol Ther. 1999;66:66–75.CrossRefPubMedGoogle Scholar
  37. 37.
    Caruso R, Perico N, Cattaneo D, Piccinini G, Bonazzola S, Remuzzi G, et al. Whole-blood calcineurin activity is not predicted by cyclosporine blood concentration in renal transplant recipients. Clin Chem. 2001;47:1679–87.PubMedGoogle Scholar
  38. 38.
    Barama A, Perner F, Beauregard-Zollinger L. Absorption profiling of cyclosporine therapy for de novo kidney transplantation: a retrospective randomized study comparing sparse sampling to trough monitoring [abstract no. 190]. Transplantation. 2000;69(Suppl):S162.Google Scholar
  39. 39.
    Keown PA. New concepts in cyclosporine monitoring. Curr Opin Nephrol Hypertens. 2002;11:619–26.CrossRefPubMedGoogle Scholar
  40. 40.
    Lanino E, Rondelli R, Locatelli F, Messina C, Pession A, Balduzzi A, et al. Early (day -7) versus conventional (day -1) inception of cyclosporine-A for graft-versus-host disease prophylaxis after unrelated donor hematopoietic stem cell transplantation in children. Long-term results of an AIEOP prospective, randomized study. Biol Blood Marrow Transplant. 2009;15:741–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Dini G, Lamparelli T, Rondelli R, Lanino E, Barbanti M, Costa C, et al. Unrelated donor marrow transplantation for chronic myelogenous leukaemia. Br J Haematol. 1998;102:544–52.CrossRefPubMedGoogle Scholar
  42. 42.
    Busauschina A, Schnuelle P, van der Woude FJ. Cyclosporine nephrotoxicity. Transplant Proc. 2004;36:229S–33S.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Cécile Gérard
    • 1
    • 2
  • Nathalie Bleyzac
    • 3
    • 4
  • Pascal Girard
    • 1
    • 2
  • Gilles Freyer
    • 1
    • 2
  • Yves Bertrand
    • 3
  • Michel Tod
    • 1
    • 2
    • 5
  1. 1.Université de LyonLyonFrance
  2. 2.Faculté de Médecine Lyon SudUniversité Lyon 1, EA3738, CTOOullinsFrance
  3. 3.Institut d’Hématologie et d’Oncologie PédiatriqueLyonFrance
  4. 4.Faculté de MédecineUniversité Lyon 1LyonFrance
  5. 5.PharmacieHôpital de la Croix-Rousse, Hospices Civils de LyonLyon cedex 04France

Personalised recommendations