Pharmaceutical Research

, Volume 27, Issue 9, pp 1788–1799 | Cite as

A Direct Comparison of Anti-microRNA Oligonucleotide Potency

  • Kim A. Lennox
  • Mark A. BehlkeEmail author
Research Paper



Cataloguing endogenous miRNA targets by inhibiting miRNA function is fundamental to understanding the biological importance of each miRNA in gene regulatory pathways. Methods to down-regulate miRNA activity may help treat diseases where over-expression of miRNAs relates to the underlying pathophysiology. This study objectively evaluates the in vitro potency of different anti-miRNA oligonucleotides (AMOs) using various design and modification strategies described in the literature as well as some novel modification strategies.


MiR21 and miR16 AMOs, containing chemical modifications such as 2′-O-methyl RNA, locked nucleic acid and 2′-Fluoro bases with or without phosphorothioate linkages, were directly compared by transfection into HeLa cells using a dual-luciferase reporter assay to quantify miRNA inhibition.


Potency for the various AMOs ranged from inactive at high dose (50 nM) to strongly inhibitory at both high and low dose (1 nM). Including phosphorothioate linkages improved nuclease stability and generally increased functional potency.


Incorporating high binding affinity modifications, such as LNA and 2′F bases, increases AMO potency while maintaining specificity; nevertheless, use of low dose is preferred when using high potency reagents to minimize the potential for cross reactivity. 2′OMe/LNA chimeras with PS modifications were the most potent constructs tested for miRNA inhibition in vitro.


antagonist antisense LNA miRNA potency 



2′-F RNA


2′-O-methyl RNA


anti-miRNA oligonucleotide


antisense oligonucleotide


locked nucleic acids




RNA induced silencing complex


RNA interference


melting temperature


untranslated region



We thank Dr. Scott Rose for making the mouse liver protein extracts used in the nuclease stability studies. This research was entirely supported by internal funding from Integrated DNA Technologies, Inc.

Supplementary material

11095_2010_156_MOESM1_ESM.pdf (15 kb)
Table S1 Anti-miRNA Oligonucleotides (PDF 15 kb)
11095_2010_156_MOESM2_ESM.pdf (483 kb)
Fig. S1 Effect of chemical modifications on the stability of oligonucleotides in mouse liver protein extract. A) AMOs were designed using DNA, 2′-O-methyl RNA (2′OMe), locked nucleic acid (LNA) and 2′-Fluoro (2′F) bases with varying degrees of phosphorothioate (PS) linkages. B) 8 μM of each AMO was incubated in 20% mouse liver protein extract for 0, 2, 6 or 24 hrs, with the reactions stopped by adding equal volumes to 2X formamide gel loading buffer, flash freezing on dry ice and storage at −80°C. 40 pmoles of each AMO was separated on 14% polyacrylamide gels supplemented with 8M urea and 20% formamide, stained with 1X GelStar, and visualized using UV excitation. (PDF 482 kb)


  1. 1.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.CrossRefPubMedGoogle Scholar
  2. 2.
    Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 2006;20:759–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.CrossRefPubMedGoogle Scholar
  4. 4.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.CrossRefPubMedGoogle Scholar
  5. 5.
    Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development. 2005;132:4653–62.CrossRefPubMedGoogle Scholar
  6. 6.
    Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 2003;426:845–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab. 2007;91:209–17.CrossRefPubMedGoogle Scholar
  8. 8.
    Lindsay MA. microRNAs and the immune response. Trends Immunol. 2008;29:343–51.CrossRefPubMedGoogle Scholar
  9. 9.
    Nelson PT, Wang WX, Rajeev BW. MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol. 2008;18:130–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Bushati N, Cohen SM. MicroRNAs in neurodegeneration. Curr Opin Neurobiol. 2008;18:292–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Thum T, Catalucci D, Bauersachs J. MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res. 2008;79:562–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009;136:26–36.CrossRefPubMedGoogle Scholar
  13. 13.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMedGoogle Scholar
  14. 14.
    Wiemer EA. The role of microRNAs in cancer: no small matter. Eur J Cancer. 2007;43:1529–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303:95–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007;204:1553–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–66.CrossRefPubMedGoogle Scholar
  20. 20.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res. 2006;34:2294–304.CrossRefPubMedGoogle Scholar
  22. 22.
    Lennox KA, Sabel JL, Johnson MJ, Moreira BG, Fletcher CA, Rose SD et al. Characterization of modified antisense oligonucleotides in Xenopus laevis embryos. Oligonucleotides. 2006;16:26–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Brown DA, Kang SH, Gryaznov SM, DeDionisio L, Heidenreich O, Sullivan S et al. Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J Biol Chem. 1994;269:26801–5.PubMedGoogle Scholar
  24. 24.
    Geary RS, Watanabe TA, Truong L, Freier S, Lesnik EA, Sioufi NB et al. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther. 2001;296:890–7.PubMedGoogle Scholar
  25. 25.
    Freier SM, Altmann KH. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 1997;25:4429–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Petersen M, Bondensgaard K, Wengel J, Jacobsen JP. Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA:RNA hybrids. J Am Chem Soc. 2002;124:5974–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Kurreck J, Wyszko E, Gillen C, Erdmann VA. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 2002;30:1911–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Crinelli R, Bianchi M, Gentilini L, Magnani M. Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res. 2002;30:2435–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Frieden M, Hansen HF, Koch T. Nuclease stability of LNA oligonucleotides and LNA-DNA chimeras. Nucleos Nucleot Nucleic Acids. 2003;22:1041–3.CrossRefGoogle Scholar
  30. 30.
    Petersen M, Wengel J. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol. 2003;21:74–81.CrossRefPubMedGoogle Scholar
  31. 31.
    Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33:1290–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Hutvagner G, Simard MJ, Mello CC, Zamore PD. Sequence-specific inhibition of small RNA function. PLoS Biol. 2004;2:E98.CrossRefPubMedGoogle Scholar
  33. 33.
    Meister G, Landthaler M, Dorsett Y, Tuschl T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. Rna. 2004;10:544–50.CrossRefPubMedGoogle Scholar
  34. 34.
    Orom UA, Kauppinen S, Lund AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene. 2006;372:137–41.CrossRefPubMedGoogle Scholar
  35. 35.
    Vermeulen A, Robertson B, Dalby AB, Marshall WS, Karpilow J, Leake D et al. Double-stranded regions are essential design components of potent inhibitors of RISC function. Rna. 2007;13:723–30.CrossRefPubMedGoogle Scholar
  36. 36.
    Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98.CrossRefPubMedGoogle Scholar
  37. 37.
    Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 2007;5:e203.CrossRefPubMedGoogle Scholar
  38. 38.
    Leaman D, Chen PY, Fak J, Yalcin A, Pearce M, Unnerstall U et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell. 2005;121:1097–108.CrossRefPubMedGoogle Scholar
  39. 39.
    Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008;36:1153–62.CrossRefPubMedGoogle Scholar
  40. 40.
    Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Davis S, Propp S, Freier SM, Jones LE, Serra MJ, Kinberger G et al. Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res. 2009;37:70–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem. 2003;270:1628–44.CrossRefPubMedGoogle Scholar
  43. 43.
    Eder PS, DeVine RJ, Dagle JM, Walder JA. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res Dev. 1991;1:141–51.PubMedGoogle Scholar
  44. 44.
    Dagle JM, Weeks DL, Walder JA. Pathways of degradation and mechanism of action of antisense oligonucleotides in Xenopus laevis embryos. Antisense Res Dev. 1991;1:11–20.PubMedGoogle Scholar
  45. 45.
    Koziolkiewicz M, Wojcik M, Kobylanska A, Karwowski B, Rebowska B, Guga P et al. Stability of stereoregular oligo(nucleoside phosphorothioate)s in human plasma: diastereoselectivity of plasma 3′-exonuclease. Antisense Nucleic Acid Drug Dev. 1997;7:43–8.PubMedGoogle Scholar
  46. 46.
    Gilar M, Belenky A, Budman Y, Smisek DL, Cohen AS. Impact of 3′-exonuclease stereoselectivity on the kinetics of phosphorothioate oligonucleotide metabolism. Antisense Nucleic Acid Drug Dev. 1998;8:35–42.PubMedGoogle Scholar
  47. 47.
    Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007;35:2885–92.CrossRefPubMedGoogle Scholar
  48. 48.
    Tang JY, Temsamani J, Agrawal S. Self-stabilized antisense oligodeoxynucleotide phosphorothioates: properties and anti-HIV activity. Nucleic Acids Res. 1993;21:2729–35.CrossRefPubMedGoogle Scholar
  49. 49.
    Hosono K, Kuwasaki T, Tsukahara S, Takai K, Takaku H. Properties of base-pairing in the stem region of hairpin antisense oligonucleotides containing 2′-methoxynucleosides. Biochim Biophys Acta. 1995;1244:339–44.PubMedGoogle Scholar
  50. 50.
    Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327:198–201.CrossRefPubMedGoogle Scholar
  51. 51.
    Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.CrossRefPubMedGoogle Scholar
  52. 52.
    Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 2006;13:496–502.CrossRefPubMedGoogle Scholar
  53. 53.
    You Y, Moreira BG, Behlke MA, Owczarzy R. Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res. 2006;34:e60.CrossRefPubMedGoogle Scholar
  54. 54.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Integrated DNA TechnologiesCoralvilleUSA

Personalised recommendations