Pharmaceutical Research

, Volume 27, Issue 8, pp 1498–1511 | Cite as

Novel Mixed Polymeric Micelles for Enhancing Delivery of Anticancer Drug and Overcoming Multidrug Resistance in Tumor Cell Lines Simultaneously

  • Xinru Li
  • Pingzhu Li
  • Yanhui Zhang
  • Yanxia Zhou
  • Xingwei Chen
  • Yanqing Huang
  • Yan Liu
Research Paper



To evaluate novel mixed polymeric micelles based on monomethoxy poly(ethylene glycol)-poly(D,L-lactic acid) (mPEG-PLA) and Pluronic L61 for delivery of paclitaxel (PTX) to circumvent unfavorable effects resulting from Cremophore EL in Cremophore EL-based PTX formulation and overcoming multidrug resistance (MDR) in tumor cells at the same time.


PTX-loaded plain micelles and mixed micelles were prepared and characterized by determining PTX release in vitro, MDR reversal effect in human breast cancer MDR MCF-7/ADR cell sublines and pharmacokinetics in vivo.


Both PTX-loaded plain micelles and mixed micelles had similar in vitro release profile. Mixed micellar PTX significantly reduced IC50 of PTX in MCF-7/ADR cells compared to free PTX and plain micellar PTX, and mixed micelles substantially enhanced cellular accumulation of R 123 in MCF-7/ADR cells compared to free R123 and plain micelles. PTX-loaded mixed micelles with lower content of L61 exhibited comparable cytotoxicity to that observed with Cremophore EL-based PTX formulation in inhibiting the growth of MCF-7/ADR cells. Moreover, plain micelles and mixed micelles retained the pharmacokinetic characteristics of PTX in rats compared with Cremophore EL-based PTX formulation.


This study suggested that the mixed micelles could enhance delivery of PTX and cell-killing effect for MDR MCF-7/ADR cells.


methoxy poly(ethylene glycol)-poly(D,L-lactic acid) (mPEG-PLA) mixed polymeric micelles multidrug resistance (MDR) paclitaxel pluronic L61 



We would like to acknowledge the support of this work by the National Development of Significant New Drugs (New Preparation and New Technology, 2009zx09310-001) and the National Basic Research Program of China (973 program, 2009CB930300).


  1. 1.
    Stein WD, Bates SE, Fojo T. Intractable cancers: the many faces of multidrug resistance and the many targets it presents for therapeutic attack. Curr Drug Targets. 2004;5:333–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci. 2006;31:164–72.CrossRefPubMedGoogle Scholar
  3. 3.
    Kirkin V, Joos S, Zornig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta. 2004;1644:229–49.CrossRefPubMedGoogle Scholar
  4. 4.
    Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Duhem C, Ries F, Dicato M. What does Multidrug Resistance (MDR) expression mean in the clinic? Oncologist. 1996;1:151–8.PubMedGoogle Scholar
  6. 6.
    Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.CrossRefPubMedGoogle Scholar
  7. 7.
    Gottesman MM, Pastan I, Ambudkar SV. P-glycoprotein and multi drug resistance. Curr Opin Genet Dev. 1996;6:610–17.CrossRefPubMedGoogle Scholar
  8. 8.
    Lage H. MDR1/P-glycoprotein (ABCB1) as target for RNA interference-mediated reversal of multidrug resistance. Curr Drug Targets. 2006;7:813–21.CrossRefPubMedGoogle Scholar
  9. 9.
    Ferry DR, Traunecker H, Kerr DJ. Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer. 1996;32A:1070–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci. 2000;11:265–83.CrossRefPubMedGoogle Scholar
  11. 11.
    Rowinsky EK, Smith L, Wang YM, Chaturvedi P, Villalona M, Campbell E et al. Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP. J Clin Oncol. 1998;16:2964–76.PubMedGoogle Scholar
  12. 12.
    Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control. 2003;10:159–65.PubMedGoogle Scholar
  13. 13.
    Werle M. Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm Res. 2008;25:500–11.CrossRefPubMedGoogle Scholar
  14. 14.
    Kabanov A, Alakhov V. Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carr Syst. 2002;19:1–72.CrossRefGoogle Scholar
  15. 15.
    Sharma AK, Zhang L, Li S, Kelly DL, Alakhov VY, Batrakova EV et al. Prevention of MDR development in leukemia cells by micelle-forming polymeric surfactant. J Control Release. 2008;131:220–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev. 2002;54:759–79.CrossRefPubMedGoogle Scholar
  17. 17.
    Venne A, Li S, Mandeville R, Kabanov A, Alakhov V. Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res. 1996;56:3626–9.PubMedGoogle Scholar
  18. 18.
    Alakhov V, Moskaleva E, Batrakova EV, Kabanov AV. Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug Chem. 1996;7:209–16.CrossRefPubMedGoogle Scholar
  19. 19.
    Batrakova EV, Li S, Alakhov VYu, Elmquist WF, Miller DW, Kabanov AV. Sensitization of cells overexpressing multidrug-resistant proteins by Pluronic P85. Pharm Res. 2003;20:1581–90.CrossRefPubMedGoogle Scholar
  20. 20.
    Batrakova EV, Li S, Elmquist WF, Miller DW, Alakhov VY, Kabanov AV. Mechanism of sensitization of MDR cancer cells by Pluronic block copolymers: Selective energy depletion. Br J Cancer. 2001;85:1987–97.CrossRefPubMedGoogle Scholar
  21. 21.
    Werle M. Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm Res. 2008;25:500–11.CrossRefPubMedGoogle Scholar
  22. 22.
    Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.CrossRefPubMedGoogle Scholar
  23. 23.
    Ai H, Flask C, Weinberg B, Shuai X, Pagel MD, Farrell D et al. Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probe. Adv Mater. 2005;17:1949–52.CrossRefGoogle Scholar
  24. 24.
    Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Design. 2006;12:4669–84.CrossRefGoogle Scholar
  25. 25.
    Le Garrec D, Gori S, Luo L, Lessard D, Smith DC, Yessine M-A et al. Poly(N-vinylpyrrolidone)-block-poly(D, L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Release. 2004;99:83–101.CrossRefPubMedGoogle Scholar
  26. 26.
    Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21:201–30.CrossRefPubMedGoogle Scholar
  27. 27.
    Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Therap Drug Carrier Syst. 2003;20:357–403.CrossRefGoogle Scholar
  28. 28.
    Barratt G. Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci. 2003;60:21–37.CrossRefPubMedGoogle Scholar
  29. 29.
    Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer. 2004;90:2085–91.PubMedGoogle Scholar
  30. 30.
    Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer. 2004;91:1775–81.CrossRefPubMedGoogle Scholar
  31. 31.
    Mizumura Y, Matsumura Y, Yokoyama M, Okano T, Kawaguchi T, Moriyasu F et al. Incorporation of the anticancer agent KRN5500 into polymeric micelles diminishes the pulmonary toxicity. Jpn J Cancer Res. 2002;93:1237–43.PubMedGoogle Scholar
  32. 32.
    Zhang XC, Burt HM, Hoff DV, Dexter D, Mangold G, Degen D et al. An investigation of the antitumor activity and biodistribution of polymeric micellar paclitaxel. Cancer Chemother Pharmacol. 1997;40:81–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Li X, Huang Y, Chen X, Zhou Y, Zhang Y, Li P et al. Self-assembly and characterization of Pluronic P105 micelles for liver-targeted delivery of silybin. J Drug Target. 2009;17:739–50.CrossRefPubMedGoogle Scholar
  34. 34.
    Yang XQ, Deng WJ, Fu LW, Blanco E, Gao JM, Quan DP et al. Folate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326. J Biomed Mater Res. 2008;86A:48–60.CrossRefGoogle Scholar
  35. 35.
    Wang YZ, Yu L, Han LM, Sha XY, Fang XL. Difunctional Pluronic copolymer micelles for paclitaxel delivery: Synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. Inter J Pharm. 2007;337:63–73.CrossRefGoogle Scholar
  36. 36.
    Chiappetta DA, Sosnik A. Poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm. 2007;66:303–17.CrossRefPubMedGoogle Scholar
  37. 37.
    Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Inter J Pharm. 2002;235:179–92.CrossRefGoogle Scholar
  38. 38.
    Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37:1590–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL et al. Hypersensitivity reactions from taxol. J Clin Oncol. 1990;8:1263–8.PubMedGoogle Scholar
  40. 40.
    Geney R, Ungureanu M, Li D, Ojima I. Overcoming multidrug resistance in taxane chemotherapy. Clin Chem Lab Med. 2002;40:918–25.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang X, Jackson JK, Burt HM. Development of amphiphilic diblock copolymers as micellar carriers of taxol. Inter J Pharm. 1996;132:195–206.CrossRefGoogle Scholar
  42. 42.
    Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Kim SW et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72:191–202.CrossRefPubMedGoogle Scholar
  43. 43.
    Yang ZL, Li XR, Yang KW, Liu Y. Amphotericin B-loaded poly(ethylene glycol)-poly(lactide) micelles: Preparation, freeze-drying and in vitro release. J Biomed Mater Res. 2008;85A:539–46.CrossRefGoogle Scholar
  44. 44.
    Wilhelm M, Zhao CL, Wang YC, Xu RL, Winnik MA. Macromolecules. 1999;24:1033–40.CrossRefGoogle Scholar
  45. 45.
    Huh KM, Lee SC, Cho YW, Lee J, Jeong JH, Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 2005;101:59–68.CrossRefPubMedGoogle Scholar
  46. 46.
    Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A. Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res. 1999;16:1373–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Jones MC, Leroux JC. Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48:101–11.CrossRefPubMedGoogle Scholar
  48. 48.
    Choa YW, Leeb J, Leeb SC, Huhb KM, Park K. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J Control Release. 2004;97:249–57.CrossRefGoogle Scholar
  49. 49.
    Lee SC, Kim C, Kwon IC, Chung H, Jeong SY. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(ε-caprolactone) copolymer as a carrier for paclitaxel. J Control Release. 2003;89:437–46.CrossRefGoogle Scholar
  50. 50.
    Friche E, Jensen PB, Sehested M, Demant EF, Nissen NN. The solvents Cremophor EL and Tween 80 modulate daunorubicin resistance in the multidrug resistant Ehrlich ascites tumor. Cancer Commun. 1990;2:297–303.PubMedGoogle Scholar
  51. 51.
    Hwang M, Ahn C-H, Pine PS, Yin JJ, Hrycyna CA, Licht T et al. Effect of combination of suboptimal concentrations of P-glycoprotein blockers on the proliferation of MDR1 gene expressing cells. Int J Cancer. 1996;65:389–97.CrossRefPubMedGoogle Scholar
  52. 52.
    Brasitus TA. Modulation of P-glycoprotein-mediated drug transport by alterations in lipid fluidity of rat liver canalicular membrane vesicles. J Biol Chem. 1992;267:24995–5002.PubMedGoogle Scholar
  53. 53.
    Dudeja PK, Anderson KM, Harris JS, Buckingham L, Coon JS. Reversal of multidrug resistance phenotype by surfactants: relationship to membrane lipid fluidity. Arch Biochem Biophys. 1995;319:309–15.CrossRefPubMedGoogle Scholar
  54. 54.
    Webster L, Linsenmeyer M, Millward M, Morton C, Bishop J, Woodcock D. Measurement of CrEL following Taxol: plasma levels sufficient to reverse drug exclusion mediated by the multidrug-resistant phenotype. J Natl Cancer Inst. 1993;85:1685–90.CrossRefPubMedGoogle Scholar
  55. 55.
    Webster LK, Linsenmeyer ME, Rischin D, Urch ME, Woodcock DM, Millward MJ. Plasma concentrations of polysorbate 80 measured in patients following administration of docetaxel or etoposide. Cancer Chemother Pharmacol. 1997;39:557–60.CrossRefPubMedGoogle Scholar
  56. 56.
    Arsenaut AL, Ling V, Kartner N. Altered plasma membrane ultrastructure in multidrug resistant cells. Bichim Biophys Acta. 1988;938:315–21.CrossRefGoogle Scholar
  57. 57.
    Batrakova EV, Miller DW, Li S, Alakhov VY, Kabanov AV, Elmquist WF. Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. J Pharmacol Exp Ther. 2001;296:551.PubMedGoogle Scholar
  58. 58.
    Evers R, Kool M, Smith AJ, Deemter LV, Haas MD, Borst P. Inhibitory effect of the reversal agents V-104, GF120918 and Pluronic L61 on MDR1 Pgp-, MRP1- and MRP2-mediated transport. Br J Cancer. 2000;83:366–74.CrossRefPubMedGoogle Scholar
  59. 59.
    Naito S, Koga H, Yokomizo A, Sakamoto N, Kotoh S, Nakashima M et al. Molecular analysis of mechanisms regulating drug sensitivity and the development of newchemotherapy strategies for genitourinary carcinomas. World J Surg. 2000;24:1183–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA. 1987;84:265–9.CrossRefPubMedGoogle Scholar
  61. 61.
    van der Kolk DM, de Vries EG, van Putten WJ, Verdonck LF, Ossenkoppele GJ, Verhoef GE et al. P-glycoprotein and multidrug resistance protein activities in relation to treatment outcome in acute myeloid leukemia. Clin Cancer Res. 2000;6:3205–14.PubMedGoogle Scholar
  62. 62.
    Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene. 2003;22:7512–23.CrossRefPubMedGoogle Scholar
  63. 63.
    Batrakova EV, Dorodnych TY, Klinskii EY, Kliushnenkova EN, Shemchukova OB, Goncharova ON et al. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer. 1996;74:1545–52.PubMedGoogle Scholar
  64. 64.
    Alakhov V, Klinski E, Li S, Pietrzynski G, Venne A, Batrakova EV et al. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloids Surf B Biointerfaces. 1999;16:113–34.CrossRefGoogle Scholar
  65. 65.
    Kitazaki T, Oka M, Nakamura Y, Tsurutani J, Doi S, Yasunaga M et al. Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer. 2005;49:337–43.CrossRefPubMedGoogle Scholar
  66. 66.
    Batrakova EV, Han H-Y, Alakhov VYu, Miller DW, Kabanov AV. Effects of Pluronic block copolymers on drug absorption in Caco-2 cell monolayers. Pharm Res. 1998;15:850–5.CrossRefPubMedGoogle Scholar
  67. 67.
    Miller DW, Batrakova EV, Waltner TO, Alakhov VYu, Kabanov AV. Interaction of Pluronic block copolymers with brain microvessel endothelial cells: evidence for multiple absorption pathways. Bioconjugate Chem. 1997;8:649–57.CrossRefGoogle Scholar
  68. 68.
    Batrakova EV, Han H-Y, Miller DW, Kabanov AV. Effects of Pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm Res. 1998;15:1525–32.CrossRefPubMedGoogle Scholar
  69. 69.
    Mathot F. A. des Rieux, A. Arien, Y.J. Schneider, M. Brewster, V. Preat. Transport mechanisms of mmePEG750P(CL-co-TMC) polymeric micelles across the intestinal barrier. J Control Release. 2007;124:134–43.CrossRefPubMedGoogle Scholar
  70. 70.
    Liggins RT, Burt HM. Polyether–polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev. 2002;54:191–202.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xinru Li
    • 1
  • Pingzhu Li
    • 1
  • Yanhui Zhang
    • 1
  • Yanxia Zhou
    • 1
  • Xingwei Chen
    • 1
  • Yanqing Huang
    • 2
  • Yan Liu
    • 1
  1. 1.Department of PharmaceuticsSchool of Pharmaceutical Sciences Peking UniversityBeijingChina
  2. 2.Pharmaceutical Teaching Experiment Center School of Pharmaceutical SciencesPeking UniversityBeijingChina

Personalised recommendations