Pharmaceutical Research

, Volume 27, Issue 6, pp 999–1013 | Cite as

Nrf2-Keap1 Signaling as a Potential Target for Chemoprevention of Inflammation-Associated Carcinogenesis

  • Joydeb Kumar Kundu
  • Young-Joon SurhEmail author
Expert Review


Persistent inflammatory tissue damage is causally associated with each stage of carcinogenesis. Inflammation-induced generation of reactive oxygen species, reactive nitrogen species, and other reactive species not only cause DNA damage and subsequently mutations, but also stimulate proliferation of initiated cells and even metastasis and angiogenesis. Induction of cellular cytoprotective enzymes (e.g., heme oxygenase-1, NAD(P)H:quinone oxidoreductase, superoxide dismutase, glutathione-S-transferase, etc.) has been shown to mitigate aforementioned events implicated in inflammation-induced carcinogenesis. A unique feature of genes encoding these cytoprotective enzymes is the presence of a cis-acting element, known as antioxidant response element (ARE) or electrophile response element (EpRE), in their promoter region. A stress-responsive transcription factor, nuclear factor erythroid-2-related factor-2 (Nrf2), initially recognized as a key transcriptional regulator of various cytoprotective enzymes, is known to play a pivotal role in cellular defense against inflammatory injuries. Activation of Nrf2 involves its release from the cytosolic repressor Kelch-like ECH-associated protein-1 (Keap1) and subsequent stabilization and nuclear localization for ARE/EpRE binding. Genetic or pharmacologic inactivation of Nrf2 has been shown to abolish cytoprotective capability and to aggravate experimentally induced inflammatory injuries. Thus, Nrf2-mediated cytoprotective gene induction is an effective strategy for the chemoprevention of inflammation-associated carcinogenesis.


anti-inflammation chemoprevention chemopreventive agents inflammation Keap1 Nrf2 redox signaling 



This work was supported by the grants for 21C Frontier Functional Human Genome Project (Grant Number FG07-21-21) and the Innovative Drug Research Center (R11-2007-107-01002-0) from National Research Foundation, the Ministry of Education, Science and Technology, Republic of Korea.


  1. 1.
    Moolgavkar SH. The multistage theory of carcinogenesis and the age distribution of cancer in man. J Natl Cancer Inst. 1978;61:49–52.PubMedGoogle Scholar
  2. 2.
    Halliday GM. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res. 2005;571:107–20.PubMedGoogle Scholar
  3. 3.
    Hattori Y, Nishigori C, Tanaka T, Uchida K, Nikaido O, Osawa T, et al. 8-hydroxy-2′-deoxyguanosine is increased in epidermal cells of hairless mice after chronic ultraviolet B exposure. J Invest Dermatol. 1996;107:733–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195–214.PubMedCrossRefGoogle Scholar
  5. 5.
    Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000;21:361–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res. 2000;60:184–90.PubMedGoogle Scholar
  7. 7.
    Ohshima H, Sawa T, Akaike T. 8-nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: formation, occurrence, and implications in inflammation and carcinogenesis. Antioxid Redox Signal. 2006;8:1033–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Yermilov V, Rubio J, Becchi M, Friesen MD, Pignatelli B, Ohshima H. Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis. 1995;16:2045–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Kawanishiand S, Hiraku Y. Oxidative and nitrative DNA damage as biomarker for carcinogenesis with special reference to inflammation. Antioxid Redox Signal. 2006;8:1047–58.CrossRefGoogle Scholar
  10. 10.
    Bartschand H, Nair J. Accumulation of lipid peroxidation-derived DNA lesions: potential lead markers for chemoprevention of inflammation-driven malignancies. Mutat Res. 2005;591:34–44.Google Scholar
  11. 11.
    Kalyanaraman B, Sivarajah K, Eling TE, Mason RP. A free radical mediated cooxidation of tetramethylhydrazine by prostaglandin hydroperoxidase. Carcinogenesis. 1983;4:1341–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Kundu JK, Surh Y-J. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659:15–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Itzkowitzand SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287:G7–17.CrossRefGoogle Scholar
  15. 15.
    Matsuzaki K, Murata M, Yoshida K, Sekimoto G, Uemura Y, Sakaida N, et al. Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis and hepatocellular carcinoma. Hepatology. 2007;46:48–57.PubMedCrossRefGoogle Scholar
  16. 16.
    Philpottand M, Ferguson LR. Immunonutrition and cancer. Mutat Res. 2004;551:29–42.Google Scholar
  17. 17.
    Schottenfeldand D, Beebe-Dimmer J. Chronic inflammation: a common and important factor in the pathogenesis of neoplasia. CA Cancer J Clin. 2006;56:69–83.CrossRefGoogle Scholar
  18. 18.
    Seril DN, Liao J, Yang GY, Yang CS. Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis. 2003;24:353–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Clevers H. At the crossroads of inflammation and cancer. Cell. 2004;118:671–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Eaden J, Abrams K, Ekbom A, Jackson E, Mayberry J. Colorectal cancer prevention in ulcerative colitis: a case-control study. Aliment Pharmacol Ther. 2000;14:145–53.PubMedCrossRefGoogle Scholar
  21. 21.
    Perwez Hussain S, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121:2373–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Porta C, Larghi P, Rimoldi M, Grazia Totaro M, Allavena P, Mantovani A, et al. Cellular and molecular pathways linking inflammation and cancer. Immunobiology. 2009;214:761–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Surh Y-J. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen XL, Kunsch C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des. 2004;10:879–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee JS, Surh YJ. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 2005;224:171–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Long 2nd DJ, Waikel RL, Wang XJ, Perlaky L, Roop DR, Jaiswal AK. NAD(P)H:quinone oxidoreductase 1 deficiency increases susceptibility to benzo(a)pyrene-induced mouse skin carcinogenesis. Cancer Res. 2000;60:5913–5.PubMedGoogle Scholar
  27. 27.
    Iskander K, Gaikwad A, Paquet M, Long 2nd DJ, Brayton C, Barrios R, et al. Lower induction of p53 and decreased apoptosis in NQO1-null mice lead to increased sensitivity to chemical-induced skin carcinogenesis. Cancer Res. 2005;65:2054–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Begleiter A, Sivananthan K, Curphey TJ, Bird RP. Induction of NAD(P)H quinone: oxidoreductase1 inhibits carcinogen-induced aberrant crypt foci in colons of Sprague-Dawley rats. Cancer Epidemiol Biomarkers Prev. 2003;12:566–72.PubMedGoogle Scholar
  29. 29.
    Dinkova-Kostova AT, Jenkins SN, Wehage SL, Huso DL, Benedict AL, Stephenson KK, et al. A dicyanotriterpenoid induces cytoprotective enzymes and reduces multiplicity of skin tumors in UV-irradiated mice. Biochem Biophys Res Commun. 2008;367:859–65.PubMedCrossRefGoogle Scholar
  30. 30.
    Paul G, Bataille F, Obermeier F, Bock J, Klebl F, Strauch U, et al. Analysis of intestinal haem-oxygenase-1 (HO-1) in clinical and experimental colitis. Clin Exp Immunol. 2005;140:547–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Amstad PA, Liu H, Ichimiya M, Berezesky IK, Trump BF. Manganese superoxide dismutase expression inhibits soft agar growth in JB6 clone41 mouse epidermal cells. Carcinogenesis. 1997;18:479–84.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao Y, Xue Y, Oberley TD, Kiningham KK, Lin SM, Yen HC, et al. Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res. 2001;61:6082–8.PubMedGoogle Scholar
  33. 33.
    Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene. 2005;24:367–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Henderson CJ, Smith AG, Ure J, Brown K, Bacon EJ, Wolf CR. Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci USA. 1998;95:5275–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N, et al. Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci USA. 2005;102:4584–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu H, Dinkova-Kostova AT, Talalay P. Coordinate regulation of enzyme markers for inflammation and for protection against oxidants and electrophiles. Proc Natl Acad Sci USA. 2008;105:15926–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 2004;36:1199–207.PubMedCrossRefGoogle Scholar
  38. 38.
    Owuor ED, Kong AN. Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol. 2002;64:765–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Surh Y-J, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008;74:1526–39.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev. 2006;38:769–89.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24:10941–53.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang DD, Lo SC, Sun Z, Habib GM, Lieberman MW, Hannink M. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J Biol Chem. 2005;280:30091–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Khor TO, Huang MT, Prawan A, Liu Y, Hao X, Yu S, et al. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res (Phila Pa). 2008;1:187–91.Google Scholar
  44. 44.
    Kim J, Cha YN, Surh Y-J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res (2009).Google Scholar
  45. 45.
    Yanaka A, Fahey JW, Fukumoto A, Nakayama M, Inoue S, Zhang S, et al. Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prev Res (Phila Pa). 2009;2:353–60.Google Scholar
  46. 46.
    Koshiol J, Rotunno M, Consonni D, Pesatori AC, De Matteis S, Goldstein AM, et al. Chronic obstructive pulmonary disease and altered risk of lung cancer in a population-based case-control study. PLoS ONE. 2009;4:e7380.PubMedCrossRefGoogle Scholar
  47. 47.
    Blake DJ, Singh A, Kombairaju P, Malhotra D, Mariani TJ, Tuder RM, et al. Deletion of keap1 in the lung attenuates acute cigarette smoke-induced oxidative stress and inflammation. Am J Respir Cell Mol Biol (2009).Google Scholar
  48. 48.
    Reddy NM, Kleeberger SR, Kensler TW, Yamamoto M, Hassoun PM, Reddy SP. Disruption of Nrf2 impairs the resolution of hyperoxia-induced acute lung injury and inflammation in mice. J Immunol. 2009;182:7264–71.PubMedCrossRefGoogle Scholar
  49. 49.
    Itoh K, Mochizuki M, Ishii Y, Ishii T, Shibata T, Kawamoto Y, et al. Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Delta(12,14)-prostaglandin j(2). Mol Cell Biol. 2004;24:36–45.PubMedCrossRefGoogle Scholar
  50. 50.
    Mochizuki M, Ishii Y, Itoh K, Iizuka T, Morishima Y, Kimura T, et al. Role of 15-deoxy delta(12,14) prostaglandin J2 and Nrf2 pathways in protection against acute lung injury. Am J Respir Crit Care Med. 2005;171:1260–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Gilroy DW, Colville-Nash PR, McMaster S, Sawatzky DA, Willoughby DA, Lawrence T. Inducible cyclooxygenase-derived 15-deoxy(delta)12-14PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. FASEB J. 2003;17:2269–71.PubMedGoogle Scholar
  52. 52.
    Kim EH, Surh Y-J. The role of 15-deoxy-delta(12,14)-prostaglandin J2, an endogenous ligand of peroxisome proliferator-activated receptor gamma, in tumor angiogenesis. Biochem Pharmacol. 2008;76:1544–53.PubMedCrossRefGoogle Scholar
  53. 53.
    Li YJ, Takizawa H, Azuma A, Kohyama T, Yamauchi Y, Takahashi S, et al. Disruption of Nrf2 enhances susceptibility to airway inflammatory responses induced by low-dose diesel exhaust particles in mice. Clin Immunol. 2008;128:366–73.PubMedCrossRefGoogle Scholar
  54. 54.
    Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest. 2004;114:1248–59.PubMedGoogle Scholar
  55. 55.
    Osburn WO, Yates MS, Dolan PD, Chen S, Liby KT, Sporn MB, et al. Genetic or pharmacologic amplification of nrf2 signaling inhibits acute inflammatory liver injury in mice. Toxicol Sci. 2008;104:218–27.PubMedCrossRefGoogle Scholar
  56. 56.
    Xu W, Hellerbrand C, Kohler UA, Bugnon P, Kan YW, Werner S, et al. The Nrf2 transcription factor protects from toxin-induced liver injury and fibrosis. Lab Invest. 2008;88:1068–78.PubMedCrossRefGoogle Scholar
  57. 57.
    Chowdhry S, Nazmy MH, Meakin PJ, Dinkova-Kostova AT, Walsh SV, Tsujita T, et al. Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis. Free Radic Biol Med (2009).Google Scholar
  58. 58.
    Okada K, Shoda J, Taguchi K, Maher JM, Ishizaki K, Inoue Y, et al. Nrf2 counteracts cholestatic liver injury via stimulation of hepatic defense systems. Biochem Biophys Res Commun. 2009;389:431–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Reisman SA, Yeager RL, Yamamoto M, Klaassen CD. Increased Nrf2 activation in livers from Keap1-knockdown mice increases expression of cytoprotective genes that detoxify electrophiles more than those that detoxify reactive oxygen species. Toxicol Sci. 2009;108:35–47.PubMedCrossRefGoogle Scholar
  60. 60.
    Braun S, Hanselmann C, Gassmann MG, auf dem Keller U, Born-Berclaz C, Chan K, et al. Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Mol Cell Biol. 2002;22:5492–505.PubMedCrossRefGoogle Scholar
  61. 61.
    auf dem Keller U, Huber M, Beyer TA, Kumin A, Siemes C, Braun S, et al. Nrf transcription factors in keratinocytes are essential for skin tumor prevention but not for wound healing. Mol Cell Biol. 2006;26:3773–84.CrossRefGoogle Scholar
  62. 62.
    Kannan S, Jaiswal AK. Low and high dose UVB regulation of transcription factor NF-E2-related factor 2. Cancer Res. 2006;66:8421–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Kawachi Y, Xu X, Taguchi S, Sakurai H, Nakamura Y, Ishii Y, et al. Attenuation of UVB-induced sunburn reaction and oxidative DNA damage with no alterations in UVB-induced skin carcinogenesis in Nrf2 gene-deficient mice. J Invest Dermatol. 2008;128:1773–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Khor TO, Huang MT, Kwon KH, Chan JY, Reddy BS, Kong AN. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 2006;66:11580–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Osburn WO, Karim B, Dolan PM, Liu G, Yamamoto M, Huso DL, et al. Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer. 2007;121:1883–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Becker JC, Fukui H, Imai Y, Sekikawa A, Kimura T, Yamagishi H, et al. Colonic expression of heme oxygenase-1 is associated with a better long-term survival in patients with colorectal cancer. Scand J Gastroenterol. 2007;42:852–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Gueron G, De Siervi A, Ferrando M, Salierno M, De Luca P, Elguero B, et al. Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells. Mol Cancer Res. 2009;7:1745–55.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee IT, Luo SF, Lee CW, Wang SW, Lin CC, Chang CC, et al. Overexpression of HO-1 protects against TNF-alpha-mediated airway inflammation by down-regulation of TNFR1-dependent oxidative stress. Am J Pathol. 2009;175:519–32.PubMedCrossRefGoogle Scholar
  69. 69.
    Caballero F, Meiss R, Gimenez A, Batlle A, Vazquez E. Immunohistochemical analysis of heme oxygenase-1 in preneoplastic and neoplastic lesions during chemical hepatocarcinogenesis. Int J Exp Pathol. 2004;85:213–22.PubMedCrossRefGoogle Scholar
  70. 70.
    Surh Y-J, Kundu JK, Li MH, Na HK, Cha YN. Role of Nrf2-mediated heme oxygenase-1 upregulation in adaptive survival response to nitrosative stress. Arch Pharm Res. 2009;32:1163–76.PubMedCrossRefGoogle Scholar
  71. 71.
    Ashino T, Yamanaka R, Yamamoto M, Shimokawa H, Sekikawa K, Iwakura Y, et al. Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages. Mol Immunol. 2008;45:2106–15.PubMedCrossRefGoogle Scholar
  72. 72.
    Yasui Y, Nakamura M, Onda T, Uehara T, Murata S, Matsui N, et al. Heme oxygenase-1 inhibits cytokine production by activated mast cells. Biochem Biophys Res Commun. 2007;354:485–90.PubMedCrossRefGoogle Scholar
  73. 73.
    Chen P, Sun B, Chen H, Wang G, Pan S, Kong R, et al. Effects of carbon monoxide releasing molecule-liberated CO on severe acute pancreatitis in rats. Cytokine (2009).Google Scholar
  74. 74.
    Allanson M, Reeve VE. Carbon monoxide signalling reduces photocarcinogenesis in the hairless mouse. Cancer Immunol Immunother. 2007;56:1807–15.PubMedCrossRefGoogle Scholar
  75. 75.
    Megias J, Busserolles J, Alcaraz MJ. The carbon monoxide-releasing molecule CORM-2 inhibits the inflammatory response induced by cytokines in Caco-2 cells. Br J Pharmacol. 2007;150:977–86.PubMedCrossRefGoogle Scholar
  76. 76.
    Long 2nd DJ, Waikel RL, Wang XJ, Roop DR, Jaiswal AK. NAD(P)H:quinone oxidoreductase 1 deficiency and increased susceptibility to 7, 12-dimethylbenz[a]-anthracene-induced carcinogenesis in mouse skin. J Natl Cancer Inst. 2001;93:1166–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Begleiter A, Sivananthan K, Lefas GM, Maksymiuk AW, Bird RP. Inhibition of colon carcinogenesis by post-initiation induction of NQO1 in Sprague-Dawley rats. Oncol Rep. 2009;21:1559–65.PubMedCrossRefGoogle Scholar
  78. 78.
    Rushworth SA, MacEwan DJ, O’Connell MA. Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol. 2008;181:6730–7.PubMedGoogle Scholar
  79. 79.
    Prawan A, Buranrat B, Kukongviriyapan U, Sripa B, Kukongviriyapan V. Inflammatory cytokines suppress NAD(P)H:quinone oxidoreductase-1 and induce oxidative stress in cholangiocarcinoma cells. J Cancer Res Clin Oncol. 2009;135:515–22.PubMedCrossRefGoogle Scholar
  80. 80.
    Venugopal R, Jaiswal AK. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA. 1996;93:14960–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Wilkinson JT, Radjendirane V, Pfeiffer GR, Jaiswal AK, Clapper ML. Disruption of c-Fos leads to increased expression of NAD(P)H:quinone oxidoreductase1 and glutathione S-transferase. Biochem Biophys Res Commun. 1998;253:855–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Liu J, Gu X, Robbins D, Li G, Shi R, McCord JM, et al. Protandim, a fundamentally new antioxidant approach in chemoprevention using mouse two-stage skin carcinogenesis as a model. PLoS ONE. 2009;4:e5284.PubMedCrossRefGoogle Scholar
  83. 83.
    Okada F, Shionoya H, Kobayashi M, Kobayashi T, Tazawa H, Onuma K, et al. Prevention of inflammation-mediated acquisition of metastatic properties of benign mouse fibrosarcoma cells by administration of an orally available superoxide dismutase. Br J Cancer. 2006;94:854–62.PubMedCrossRefGoogle Scholar
  84. 84.
    Piazuelo E, Cebrian C, Escartin A, Jimenez P, Soteras F, Ortego J, et al. Superoxide dismutase prevents development of adenocarcinoma in a rat model of Barrett’s esophagus. World J Gastroenterol. 2005;11:7436–43.PubMedGoogle Scholar
  85. 85.
    Shen Z, Wu W, Hazen SL. Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry. 2000;39:5474–82.PubMedCrossRefGoogle Scholar
  86. 86.
    Okada F, Nakai K, Kobayashi T, Shibata T, Tagami S, Kawakami Y, et al. Inflammatory cell-mediated tumour progression and minisatellite mutation correlate with the decrease of antioxidative enzymes in murine fibrosarcoma cells. Br J Cancer. 1999;79:377–85.PubMedCrossRefGoogle Scholar
  87. 87.
    Yamamoto S, Nakadate T, Aizu E, Kato R. Anti-tumor promoting action of phthalic acid mono-n-butyl ester cupric salt, a biomimetic superoxide dismutase. Carcinogenesis. 1990;11:749–54.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhao X, Fan Y, Shen J, Wu Y, Yin Z. Human glutathione S-transferase P1 suppresses MEKK1-mediated apoptosis by regulating MEKK1 kinase activity in HEK293 cells. Mol Cells. 2006;21:395–400.PubMedGoogle Scholar
  89. 89.
    Xue B, Wu Y, Yin Z, Zhang H, Sun S, Yi T, et al. Regulation of lipopolysaccharide-induced inflammatory response by glutathione S-transferase P1 in RAW264.7 cells. FEBS Lett. 2005;579:4081–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Luo L, Wang Y, Feng Q, Zhang H, Xue B, Shen J, et al. Recombinant protein glutathione S-transferases P1 attenuates inflammation in mice. Mol Immunol. 2009;46:848–57.PubMedCrossRefGoogle Scholar
  91. 91.
    Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, et al. Regulation of JNK signaling by GSTp. EMBO J. 1999;18:1321–34.PubMedCrossRefGoogle Scholar
  92. 92.
    Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. New York: Oxford University Press; 2007.Google Scholar
  93. 93.
    Manna SK, Kuo MT, Aggarwal BB. Overexpression of gamma-glutamylcysteine synthetase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappa B and activator protein-1. Oncogene. 1999;18:4371–82.PubMedCrossRefGoogle Scholar
  94. 94.
    Matthews GM, Butler RN. Cellular mucosal defense during Helicobacter pylori infection: a review of the role of glutathione and the oxidative pentose pathway. Helicobacter. 2005;10:298–306.PubMedCrossRefGoogle Scholar
  95. 95.
    Peran L, Camuesco D, Comalada M, Nieto A, Concha A, Adrio JL, et al. Lactobacillus fermentum, a probiotic capable to release glutathione, prevents colonic inflammation in the TNBS model of rat colitis. Int J Colorectal Dis. 2006;21:737–46.PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang F, Wang X, Wang W, Li N, Li J. Glutamine reduces TNF-alpha by enhancing glutathione synthesis in lipopolysaccharide-stimulated alveolar epithelial cells of rats. Inflammation. 2008;31:344–50.PubMedCrossRefGoogle Scholar
  97. 97.
    Sun S, Zhang H, Xue B, Wu Y, Wang J, Yin Z, et al. Protective effect of glutathione against lipopolysaccharide-induced inflammation and mortality in rats. Inflamm Res. 2006;55:504–10.PubMedCrossRefGoogle Scholar
  98. 98.
    Chu FF, Esworthy RS, Doroshow JH. Role of Se-dependent glutathione peroxidases in gastrointestinal inflammation and cancer. Free Radic Biol Med. 2004;36:1481–95.PubMedCrossRefGoogle Scholar
  99. 99.
    Nakamura Y, Feng Q, Kumagai T, Torikai K, Ohigashi H, Osawa T, et al. Ebselen, a glutathione peroxidase mimetic seleno-organic compound, as a multifunctional antioxidant. Implication for inflammation-associated carcinogenesis. J Biol Chem. 2002;277:2687–94.PubMedCrossRefGoogle Scholar
  100. 100.
    Ohashi S, Nishio A, Nakamura H, Asada M, Tamaki H, Kawasaki K, et al. Overexpression of redox-active protein thioredoxin-1 prevents development of chronic pancreatitis in mice. Antioxid Redox Signal. 2006;8:1835–45.PubMedCrossRefGoogle Scholar
  101. 101.
    Sato A, Hoshino Y, Hara T, Muro S, Nakamura H, Mishima M, et al. Thioredoxin-1 ameliorates cigarette smoke-induced lung inflammation and emphysema in mice. J Pharmacol Exp Ther. 2008;325:380–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Tamaki H, Nakamura H, Nishio A, Nakase H, Ueno S, Uza N, et al. Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factor production. Gastroenterology. 2006;131:1110–21.PubMedCrossRefGoogle Scholar
  103. 103.
    Jin W, Zhu L, Guan Q, Chen G, Wang QF, Yin HX, et al. Influence of Nrf2 genotype on pulmonary NF-κB activity and inflammatory response after traumatic brain injury. Ann Clin Lab Sci. 2008;38:221–7.PubMedGoogle Scholar
  104. 104.
    Jin W, Wang H, Ji Y, Hu Q, Yan W, Chen G, et al. Increased intestinal inflammatory response and gut barrier dysfunction in Nrf2-deficient mice after traumatic brain injury. Cytokine. 2008;44:135–40.PubMedCrossRefGoogle Scholar
  105. 105.
    Jin W, Wang H, Yan W, Xu L, Wang X, Zhao X, et al. Disruption of Nrf2 enhances upregulation of nuclear factor-kappaB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediators Inflamm. 2008;2008:725174.PubMedCrossRefGoogle Scholar
  106. 106.
    Song MY, Kim EK, Moon WS, Park JW, Kim HJ, So HS, et al. Sulforaphane protects against cytokine- and streptozotocin-induced beta-cell damage by suppressing the NF-kappaB pathway. Toxicol Appl Pharmacol. 2009;235:57–67.PubMedCrossRefGoogle Scholar
  107. 107.
    Chen XL, Dodd G, Thomas S, Zhang X, Wasserman MA, Rovin BH, et al. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol. 2006;290:H1862–70.PubMedCrossRefGoogle Scholar
  108. 108.
    Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells. 2005;10:1113–25.PubMedCrossRefGoogle Scholar
  109. 109.
    Angelov N, Moutsopoulos N, Jeong MJ, Nares S, Ashcroft G, Wahl SM. Aberrant mucosal wound repair in the absence of secretory leukocyte protease inhibitor. Thromb Haemost. 2004;92:288–97.PubMedGoogle Scholar
  110. 110.
    Bingle L, Tetley TD. Secretory leukoprotease inhibitor: partnering alpha 1-proteinase inhibitor to combat pulmonary inflammation. Thorax. 1996;51:1273–4.PubMedCrossRefGoogle Scholar
  111. 111.
    Henriksen PA, Hitt M, Xing Z, Wang J, Haslett C, Riemersma RA, et al. Adenoviral gene delivery of elafin and secretory leukocyte protease inhibitor attenuates NF-κB-dependent inflammatory responses of human endothelial cells and macrophages to atherogenic stimuli. J Immunol. 2004;172:4535–44.PubMedGoogle Scholar
  112. 112.
    Surh Y-J. NF-κB and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac J Clin Nutr. 2008;Suppl 1:269–72.Google Scholar
  113. 113.
    Bensasson RV, Zoete V, Dinkova-Kostova AT, Talalay P. Two-step mechanism of induction of the gene expression of a prototypic cancer-protective enzyme by diphenols. Chem Res Toxicol. 2008;21:805–12.PubMedCrossRefGoogle Scholar
  114. 114.
    Li W, Kong AN. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog. 2009;48:91–104.PubMedCrossRefGoogle Scholar
  115. 115.
    Lin W, Wu RT, Wu T, Khor TO, Wang H, Kong AN. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem Pharmacol. 2008;76:967–73.PubMedCrossRefGoogle Scholar
  116. 116.
    Brandenburg LO, Kipp M, Lucius R, Pufe T, Wruck CJ. Sulforaphane suppresses LPS-induced inflammation in primary rat microglia. Inflamm Res (2009).Google Scholar
  117. 117.
    Xu C, Huang MT, Shen G, Yuan X, Lin W, Khor TO, et al. Inhibition of 7, 12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res. 2006;66:8293–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Garg R, Maru G. Dietary curcumin enhances benzo(a)pyrene-induced apoptosis resulting in a decrease in BPDE-DNA adducts in mice. J Environ Pathol Toxicol Oncol. 2009;28:121–31.PubMedGoogle Scholar
  119. 119.
    Farombi EO, Shrotriya S, Na HK, Kim SH, Surh Y-J. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol. 2008;46:1279–87.PubMedCrossRefGoogle Scholar
  120. 120.
    Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R, et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J. 2003;371:887–95.PubMedCrossRefGoogle Scholar
  121. 121.
    Thimmulappa RK, Rangasamy T, Alam J, Biswal S. Dibenzoylmethane activates Nrf2-dependent detoxification pathway and inhibits benzo(a)pyrene induced DNA adducts in lungs. Med Chem. 2008;4:473–81.PubMedCrossRefGoogle Scholar
  122. 122.
    Cheung KL, Khor TO, Kong AN. Synergistic effect of combination of phenethyl isothiocyanate and sulforaphane or curcumin and sulforaphane in the inhibition of inflammation. Pharm Res. 2009;26:224–31.PubMedCrossRefGoogle Scholar
  123. 123.
    Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT, et al. Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochem Biophys Res Commun. 2006;351:883–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res. 2008;68:1303–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Kim YR, Oh JE, Kim MS, Kang MR, Park SW, Han JY, et al. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol (2009).Google Scholar
  126. 126.
    Wang R, An J, Ji F, Jiao H, Sun H, Zhou D. Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem Biophys Res Commun. 2008;373:151–4.PubMedCrossRefGoogle Scholar
  127. 127.
    Nioi P, Nguyen T. A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity. Biochem Biophys Res Commun. 2007;362:816–21.PubMedCrossRefGoogle Scholar
  128. 128.
    Song NY, Kim DH, Kim EH, Na HK, Surh Y-J. 15-Deoxy-delta 12, 14-prostaglandin J2 induces upregulation of multidrug resistance-associated protein 1 via Nrf2 activation in human breast cancer cells. Ann N Y Acad Sci. 2009;1171:210–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Kim DH, Kim JH, Kim EH, Na HK, Cha YN, Chung JH, et al. 15-Deoxy-Delta12, 14-prostaglandin J2 upregulates the expression of heme oxygenase-1 and subsequently matrix metalloproteinase-1 in human breast cancer cells: possible roles of iron and ROS. Carcinogenesis. 2009;30:645–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of PharmacySeoul National UniversitySeoulSouth Korea
  2. 2.Department of Molecular Medicine and Biopharmaceutical Sciences and Graduate School of Convergence Science and TechnologySeoul National UniversitySeoulSouth Korea

Personalised recommendations