Advertisement

Pharmaceutical Research

, Volume 26, Issue 12, pp 2647–2656 | Cite as

Evaluation of a 99mTc-Labeled AnnexinA5 Variant for Non-invasive SPECT Imaging of Cell Death in Liver, Spleen and Prostate

  • Rick Greupink
  • Charles F. Sio
  • Antwan Ederveen
  • Joke Orsel
Research Paper

Abstract

Purpose

We investigate radio-labeling and pharmacokinetics of a new AnnexinA5 variant (HYNIC-cys-AnxA5) and then assess its utility for the non-invasive detection of cell death in liver, spleen and prostate.

Methods

AnnexinA5 binds to phosphatidylserine expressed on the surface of apoptotic and necrotic cells. Contrary to other AnnexinA5 variants, the new cys-AnxA5 allows for site-specific conjugation of a hydrazinonicotinamide-maleimide moiety and subsequent radio-labeling with 99mTc at a position not involved in the AnxA5-phosphatidylserine interaction. Distribution of 99mTc-HYNIC-cys-AnxA5 was studied in rats, both invasively and via SPECT/CT. Cycloheximide was used to induce cell death in liver and spleen, whereas apoptosis in the prostate was induced by castration.

Results

HYNIC-cys-AnxA5 was efficiently and reproducibly labeled with 99mTc. Blood clearance of radioactivity after iv-injection was adequately described by a two-compartment model, the renal cortex representing the main site of accumulation. Cycloheximide treatment resulted in increased accumulation of intravenous-injected 99mTc-HYNIC-cys-AnxA5 in liver and spleen over controls, which correlated well with TUNEL staining for cell death in corresponding tissue sections. However, the increase in TUNEL-positive prostate epithelial cells observed following castration was not paralleled by greater 99mTc-HYNIC-cys-AnxA5 accumulation.

Conclusion

99mTc-HYNIC-cys-AnxA5 appears a suitable tracer for assessment of cell death in liver and spleen, but not prostate.

KEY WORDS

annexinA5 apoptosis cell death molecular imaging SPECT/CT 

ABBREVIATIONS

AnxA5

AnnexinA5

Cys-AnxA5

AnnexinA5 with cysteine incorporated via site-directed mutagenesis

HYNIC

Hydrazinonicotinamide

ORX

Orchiectomy

PS

Phosphatidylserine

ROI

Region of interest

SEM

Standard Error of the Mean

SPECT/CT

Single Photon Emission Computed Tomography/Computed Tomography

TUNEL

Terminal deoxynucleotidyl transferase dUTP Nick End Labeling

%ID

Percentage of Injected Dose

Notes

ACKNOWLEDGEMENTS

C. van Kammen and C. van Helvert of the University of Maastricht are gratefully acknowledged for animal handling and experimentation, whereas R. van Brakel, M. Berben and S. Kivits are thanked for skillful conduction of the radio-labeling, biodistribution studies and SPECT/CT experiments, respectively. Finally, Drs. B. Henry, O. Steinbach, R. Rossin, C. P. Reutelingsperger, I. Verel, D. Attia, H. Hamersma and S. Addo are thanked for valuable scientific discussions.

REFERENCES

  1. 1.
    Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2003;2:123–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Hargreaves RJ. The role of molecular imaging in drug discovery and development. Clin Pharmacol Ther. 2008;83:349–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Orsel JG, Schaeffter T. Molecular Imaging and applications for pharmaceutical R&D. In: Knäblein J, editors. Modern Biopharmaceuticals; 2005. pp. 1211–41.Google Scholar
  4. 4.
    Blankenberg FG. In vivo detection of apoptosis. J Nucl Med. 2008;49(Suppl 2):81S–95.CrossRefPubMedGoogle Scholar
  5. 5.
    Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, et al. Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med. 2005;46:2035–50.PubMedGoogle Scholar
  6. 6.
    Schlegel RA, Williamson P. Phosphatidylserine, a death knell. Cell Death Differ. 2001;8:551–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Fonge H, de Saint HM, Vunckx K, Rattat D, Nuyts J, Bormans G, et al. Preliminary in vivo evaluation of a novel 99mTc-labeled HYNIC-cys-annexin A5 as an apoptosis imaging agent. Bioorg Med Chem Lett. 2008;18:3794–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Schoemaker MH, Moshage H. Defying death: the hepatocyte's survival kit. Clin Sci (Lond). 2004;107:13–25.CrossRefGoogle Scholar
  9. 9.
    Herr I, Schemmer P, Buchler MW. On the TRAIL to therapeutic intervention in liver disease. Hepatology. 2007;46:266–74.CrossRefPubMedGoogle Scholar
  10. 10.
    Showalter SL, Hager E, Yeo CJ. Metastatic disease to the pancreas and spleen. Semin Oncol. 2008;35:160–71.CrossRefPubMedGoogle Scholar
  11. 11.
    Greupink R, Reker-Smit C, Proost JH, Loenen Weemaes AM, de Hooge M, Poelstra K, et al. Pharmacokinetics of a hepatic stellate cell-targeted doxorubicin construct in bile duct-ligated rats. Biochem Pharmacol. 2007;73:1455–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Rijks LJ, van den Bos JC, van Doremalen PA, Boer GJ, de Bruin K, Doornbos T, et al. Synthesis, estrogen receptor binding, and tissue distribution of a new iodovinylestradiol derivative (17alpha, 20E)-21-[123I]Iodo-11beta-nitrato-19-norp regna-1, 3, 5 (10), 20-tetraene-3, 17-diol (E-[123I]NIVE). Nucl Med Biol. 1998;25:411–21.CrossRefPubMedGoogle Scholar
  13. 13.
    Grierson JR, Yagle KJ, Eary JF, Tait JF, Gibson DF, Lewellen B, et al. Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjug Chem. 2004;15:373–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Yagle KJ, Eary JF, Tait JF, Grierson JR, Link JM, Lewellen B, et al. Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med. 2005;46:658–66.PubMedGoogle Scholar
  15. 15.
    Boersma HH, Liem IH, Kemerink GJ, Thimister PW, Hofstra L, Stolk LM, et al. Comparison between human pharmacokinetics and imaging properties of two conjugation methods for 99mTc-annexin A5. Br J Radiol. 2003;76:553–60.CrossRefPubMedGoogle Scholar
  16. 16.
    Haas M, de Zeeuw D, van Zanten A, Meijer DK. Quantification of renal low-molecular-weight protein handling in the intact rat. Kidney Int. 1993;43:949–54.CrossRefPubMedGoogle Scholar
  17. 17.
    Birn H, Christensen EI. Renal albumin absorption in physiology and pathology. Kidney Int. 2006;69:440–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Haverdings RF, Haas M, Greupink AR, de Vries PA, Moolenaar F, de Zeeuw D, et al. Potentials and limitations of the low-molecular-weight protein lysozyme as a carrier for renal drug targeting. Ren Fail. 2001;23:397–409.CrossRefPubMedGoogle Scholar
  19. 19.
    Tait JF, Smith C, Blankenberg FG. Structural requirements for in vivo detection of cell death with 99mTc-annexin V. J Nucl Med. 2005;46:807–15.PubMedGoogle Scholar
  20. 20.
    Hagens WI, Mattos A, Greupink R, Jager-Krikken A, Reker-Smit C, Loenen-Weemaes A, Gouw AS, Poelstra K, Beljaars L. Targeting 15d-Prostaglandin J(2) to Hepatic Stellate Cells: Two Options Evaluated. Pharm Res. 2007;24(3):566–74.CrossRefPubMedGoogle Scholar
  21. 21.
    Blair JT, Thomson AW, Whiting PH, Davidson RJ, Simpson JG. Toxicity of the immune suppressant cyclosporin A in the rat. J Pathol. 1982;138:163–78.CrossRefPubMedGoogle Scholar
  22. 22.
    Levine S, Gherson J. Morphologic effects of mitoxantrone and a related anthracenedione on lymphoid tissues. Int J Immunopharmacol. 1986;8:999–1007.CrossRefPubMedGoogle Scholar
  23. 23.
    Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 2000;32:56–67.CrossRefPubMedGoogle Scholar
  24. 24.
    Navarro VJ, Senior JR. Drug-related hepatotoxicity. N Engl J Med. 2006;354:731–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Peker C, Sarda-Mantel L, Loiseau P, Rouzet F, Nazneen L, Martet G, et al. Imaging apoptosis with (99 m)Tc-annexin-V in experimental subacute myocarditis. J Nucl Med. 2004;45:1081–6.PubMedGoogle Scholar
  26. 26.
    Kuge Y, Sato M, Zhao S, Takei T, Nakada K, Seki KI, et al. Feasibility of 99mTc-annexin V for repetitive detection of apoptotic tumor response to chemotherapy: an experimental study using a rat tumor model. J Nucl Med. 2004;45:309–12.PubMedGoogle Scholar
  27. 27.
    Keen HG, Dekker BA, Disley L, Hastings D, Lyons S, Reader AJ, et al. Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol. 2005;32:395–402.CrossRefPubMedGoogle Scholar
  28. 28.
    Murakami Y, Takamatsu H, Taki J, Tatsumi M, Noda A, Ichise R, et al. 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imaging. 2004;31:469–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Ke S, Wen X, Wu QP, Wallace S, Charnsangavej C, Stachowiak AM, et al. Imaging taxane-induced tumor apoptosis using PEGylated, 111In-labeled annexin V. J Nucl Med. 2004;45:108–15.PubMedGoogle Scholar
  30. 30.
    Mochizuki T, Kuge Y, Zhao S, Tsukamoto E, Hosokawa M, Strauss HW, et al. Detection of apoptotic tumor response in vivo after a single dose of chemotherapy with 99mTc-annexin V. J Nucl Med. 2003;44:92–7.PubMedGoogle Scholar
  31. 31.
    Corsten MF, Hofstra L, Narula J, Reutelingsperger CP. Counting heads in the war against cancer: defining the role of annexin A5 imaging in cancer treatment and surveillance. Cancer Res. 2006;66:1255–60.CrossRefPubMedGoogle Scholar
  32. 32.
    Hofstra L, Liem IH, Dumont EA, Boersma HH, van Heerde WL, Doevendans PA, et al. Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet. 2000;356:209–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Ito K, Kiyosawa N, Kumagai K, Manabe S, Matsunuma N, Yamoto T. Molecular mechanism investigation of cycloheximide-induced hepatocyte apoptosis in rat livers by morphological and microarray analysis. Toxicology. 2006;219:175–86.CrossRefPubMedGoogle Scholar
  34. 34.
    Kumagai K, Kiyosawa N, Ito K, Yamoto T, Teranishi M, Nakayama H, et al. Influence of Kupffer cell inactivation on cycloheximide-induced hepatic injury. Toxicology. 2007;241:106–18.CrossRefPubMedGoogle Scholar
  35. 35.
    Ono Y, Suzuki K, Kashiwagi B, Shibata Y, Ito K, Fukabori Y, et al. Androgen-dependent blood flow control and morphological changes of the capillaries in rat prostate. Int J Androl. 2004;27:50–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Shibata Y, Kashiwagi B, Ono Y, Fukabori Y, Suzuki K, Honma S, et al. The evaluation of rat prostate blood flow using a laser speckle flowmetry: a comparative study using the microsphere method in castrated and androgen-replenished rats. Urol Res. 2004;32:44–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Kemerink GJ, Liem IH, Hofstra L, Boersma HH, Buijs WC, Reutelingsperger CP, et al. Patient dosimetry of intravenously administered 99mTc-annexin V. J Nucl Med. 2001;42:382–7.PubMedGoogle Scholar
  38. 38.
    Kopka K, Faust A, Keul P, Wagner S, Breyholz HJ, Holtke C, et al. 5-pyrrolidinylsulfonyl isatins as a potential tool for the molecular imaging of caspases in apoptosis. J Med Chem. 2006;49:6704–15.CrossRefPubMedGoogle Scholar
  39. 39.
    Reshef A, Shirvan A, Waterhouse RN, Grimberg H, Levin G, Cohen A, et al. Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET. J Nucl Med. 2008;49:1520–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11:109–19.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rick Greupink
    • 1
  • Charles F. Sio
    • 2
  • Antwan Ederveen
    • 1
  • Joke Orsel
    • 2
  1. 1.Schering-Plough Research InstituteOssThe Netherlands
  2. 2.Department of Biomolecular EngineeringPhilips ResearchEindhovenThe Netherlands

Personalised recommendations