Pharmaceutical Research

, Volume 26, Issue 11, pp 2523–2534 | Cite as

Evaluation of Drug-Polymer Miscibility in Amorphous Solid Dispersion Systems

  • Alfred C. F. Rumondor
  • Igor Ivanisevic
  • Simon Bates
  • David E. Alonzo
  • Lynne S. Taylor
Research Paper

ABSTRACT

Purpose

To evaluate drug-polymer miscibility behavior in four different drug-polymer amorphous solid dispersion systems, namely felodipine-poly(vinyl pyrrolidone) (PVP), nifedipine-PVP, ketoconazole-PVP, and felodipine-poly(acrylic acid) (PAA).

Materials and Methods

Amorphous solid dispersion samples were prepared at different drug-to-polymer ratios and analyzed using differential scanning calorimetry (DSC), mid-infrared (IR) spectroscopy, and powder X-ray diffractometry (PXRD). To help with interpretation of the IR spectra, principal components (PC) analysis was performed. Pair Distribution Functions (PDFs) of the components in the dispersion were determined from the PXRD data, and the pure curves of the components were also extracted from PXRD data using the Pure Curve Resolution Method (PCRM) and compared against experimentally obtained results.

Results

Molecular-level mixing over the complete range of concentration was verified for nifedipine-PVP and felodipine-PVP. For felodipine-PAA, drug-polymer immiscibility was verified for samples containing 30 to 70% polymer, while IR results suggest at least some level of mixing for samples containing 10 and 90% polymer. For ketoconazole-PVP system, partial miscibility is suspected, whereby the presence of one-phase amorphous solid dispersion system could only be unambiguously verified at higher concentrations of polymer.

Conclusions

The three techniques mentioned complement each other in establishing drug-polymer miscibility in amorphous solid dispersion systems. In particular, IR spectroscopy and PXRD are sensitive to changes in local chemical environments and local structure, which makes them especially useful in elucidating the nature of miscibility in binary mixtures when DSC results are inconclusive or variable.

Key Words

amorphous solid dispersions calorimetry differential scanning infrared spectroscopy miscibility powder X-ray diffractometry 

References

  1. 1.
    Hancock BC, Zografi G. Characteristics and Significance of the Amorphous State in Pharmaceutical Systems [Review]. J. Pharm. Sci. 1997;86:1–12.CrossRefPubMedGoogle Scholar
  2. 2.
    Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17:397–404.CrossRefPubMedGoogle Scholar
  3. 3.
    Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.CrossRefPubMedGoogle Scholar
  4. 4.
    Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 1999;88:1058–66.CrossRefPubMedGoogle Scholar
  5. 5.
    Crowley KJ, Zografi G. The effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) on indomethacin crystallization from the amorphous state. Pharm Res. 2003;20:1417–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P, et al. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur. J. Pharm. Sci. 2001;12:261–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Yoshioka M, Hancock BC, Zografi G. Inhibition Of Indomethacin Crystallization In Poly(Vinylpyrrolidone) Coprecipitates. J. Pharm. Sci. 1995;84:983–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Yoshihashi Y, Iijima H, Yonemochi E, Terada K. Estimation of physical stability of amorphous solid dispersion using differential scanning calorimetry. J. Therm. Anal. Calorim. 2006;85:689–92.CrossRefGoogle Scholar
  9. 9.
    Marsac PJ, Konno H, Taylor LS. A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res. 2006;23:2306–16.CrossRefPubMedGoogle Scholar
  10. 10.
    Marsac PJ, Konno H, Rumondor ACF, Taylor LS. Recrystallization of nifedipine and felodipine from amorphous molecular level solid dispersions containing poly(vinylpyrrolidone) and sorbed water. Pharm Res. 2008;25:647–56.CrossRefPubMedGoogle Scholar
  11. 11.
    Miyazaki T, Yoshioka S, Aso Y, Kojima S. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J. Pharm. Sci. 2004;93:2710–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J. Pharm. Sci. 2008;97:1329–49.CrossRefPubMedGoogle Scholar
  13. 13.
    Matsumoto T, Zografi G. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinylacetate) in relation to indomethacin crystallization. Pharm Res. 1999;16:1722–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Shamblin SL, Zografi G. The effects of absorbed water on the properties of amorphous mixtures containing sucrose. Pharm Res. 1999;16:1119–24.CrossRefPubMedGoogle Scholar
  15. 15.
    Olabisi O, Robeson L, Shaw M. Polymer-polymer Miscibility. San Diego: Academic Press, Inc.; 1979.Google Scholar
  16. 16.
    Shamblin SL, Taylor LS, Zografi G. Mixing Behavior of Colyophilized Binary Systems. J. Pharm. Sci. 1998;87:694–701.CrossRefPubMedGoogle Scholar
  17. 17.
    Pomposo JA, Calahorra E, Eguiazabal I, Cortazar M. Miscibility Behavior of Ternary Poly(Methyl Methacrylate) Poly(Ethyl Methacrylate) Poly(P-Vinylphenol) Blends. Macromolecules. 1993;26:2104–10.CrossRefGoogle Scholar
  18. 18.
    Lu Q, Zografi G. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res. 1998;15:1202–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Bates S, Zografi G, Engers D, Morris K, Crowley K, Newman A. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm Res. 2006;23:2333–49.CrossRefPubMedGoogle Scholar
  20. 20.
    Newman A, Engers D, Bates S, Ivanisevic I, Kelly RC, Zografi G. Characterization of Amorphous API:Polymer Mixtures Using X-Ray Powder Diffraction. J. Pharm. Sci. 2008;97:4840–56.CrossRefPubMedGoogle Scholar
  21. 21.
    Brent RP. Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ: Prentice Hall; 1973.Google Scholar
  22. 22.
    I. Ivanisevic, S. Bates, and P. Chen. Novel methods for the assessment of miscibility of amorphous drug-polymer dispersions. J. Pharm. Sci. 2009;98:3373–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J. Pharm. Sci. 2006;95:2692–705.CrossRefPubMedGoogle Scholar
  24. 24.
    Marsac PJ. Molecular Level Understanding of Polymer Induced Formation and Stabilization of Amorphous API, Industrial and Physical Pharmacy. Ph. D. Dissertation: Purdue University, West Lafayette; 2007.Google Scholar
  25. 25.
    Couchman PR, Karasz FE. Classical thermodynamic discussion of effect of composition on glass-transition temperatures. Macromolecules. 1978;11:117–9.CrossRefGoogle Scholar
  26. 26.
    Rumondor ACF. The Effects of Moisture on Pharmaceutical Amorphous Solid Dispersion Systems, Industrial and Physical Pharmacy. Ph. D. Dissertation: Purdue University, West Lafayette; 2009.Google Scholar
  27. 27.
    A. C. F. Rumondor, P. Marsac, L. A. Stanford, and L. S. Taylor. Phase Behavior of Poly(vinylpyrrolidone) Containing Amorphous Solid Dispersions in the Presence of Moisture. Mol. Pharm. 2009. doi:10.1021/mp900050c.
  28. 28.
    Rantanen J, Wikstrom H, Turner R, Taylor LS. Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes. Anal Chem. 2005;77:556–63.CrossRefPubMedGoogle Scholar
  29. 29.
    Khougaz K, Clas SD. Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J. Pharm. Sci. 2000;89:1325–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Yalkowsky SH. Solubility and Solubilization in Aqueous Media. New York: Oxford University Press; 1999.Google Scholar
  31. 31.
    Marcolli C, Luo BP, Peter T. Mixing of the organic aerosol fractions: Liquids as the thermodynamically stable phases. J. Phys. Chem. A. 2004;108:2216–24.CrossRefGoogle Scholar
  32. 32.
    Marsac PJ, Li T, Taylor LS. Estimation of Drug-Polymer Miscibility and Solubility in Amorphous Solid Dispersions Using Experimentally Determined Interaction Parameters. Pharm Res. 2009;26:139–51.CrossRefPubMedGoogle Scholar
  33. 33.
    Dong J, Ozaki Y, Nakashima K. Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules. 1997;30:1111–7.CrossRefGoogle Scholar
  34. 34.
    Rubinstein M. and Colby. R. H. Polymer Physics: Oxford University Press, New York; 2003.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alfred C. F. Rumondor
    • 1
    • 2
  • Igor Ivanisevic
    • 3
  • Simon Bates
    • 3
  • David E. Alonzo
    • 1
  • Lynne S. Taylor
    • 1
  1. 1.Department of Industrial and Physical Pharmacy, School of PharmacyPurdue UniversityWest LafayetteUSA
  2. 2.Pharmaceutical and Analytical Research and DevelopmentAstraZeneca Pharmaceuticals LPWilmingtonUSA
  3. 3.SSCI, a division of Aptuit Inc.West LafayetteUSA

Personalised recommendations