Advertisement

Pharmaceutical Research

, Volume 26, Issue 11, pp 2486–2494 | Cite as

Uptake of ANG1005, A Novel Paclitaxel Derivative, Through the Blood-Brain Barrier into Brain and Experimental Brain Metastases of Breast Cancer

  • Fancy C. Thomas
  • Kunal Taskar
  • Vinay Rudraraju
  • Satyanarayana Goda
  • Helen R. Thorsheim
  • Julie A. Gaasch
  • Rajendar K. Mittapalli
  • Diane Palmieri
  • Patricia S. Steeg
  • Paul R. Lockman
  • Quentin R. Smith
Research Paper

Abstract

Purpose

We evaluated the uptake of angiopep-2 paclitaxel conjugate, ANG1005, into brain and brain metastases of breast cancer in rodents. Most anticancer drugs show poor delivery to brain tumors due to limited transport across the blood-brain barrier (BBB). To overcome this, a 19-amino acid peptide (angiopep-2) was developed that binds to low density lipoprotein receptor-related protein (LRP) receptors at the BBB and has the potential to deliver drugs to brain by receptor-mediated transport.

Methods

The transfer coefficient (Kin) for brain influx was measured by in situ rat brain perfusion. Drug distribution was determined at 30 min after i.v. injection in mice bearing intracerebral MDA-MB-231BR metastases of breast cancer.

Results

The BBB Kin for 125I-ANG1005 uptake (7.3 ± 0.2 × 10-3 mL/s/g) exceeded that for 3H-paclitaxel (8.5 ± 0.5 × 10-5) by 86-fold. Over 70% of 125I-ANG1005 tracer stayed in brain after capillary depletion or vascular washout. Brain 125I-ANG1005 uptake was reduced by unlabeled angiopep-2 vector and by LRP ligands, consistent with receptor transport. In vivo uptake of 125I-ANG1005 into vascularly corrected brain and brain metastases exceeded that of 14C-paclitaxel by 4–54-fold.

Conclusions

The results demonstrate that ANG1005 shows significantly improved delivery to brain and brain metastases of breast cancer compared to free paclitaxel.

KEY WORDS

ANG1005 blood-brain barrier brain tumor paclitaxel 

Notes

Acknowledgements

This work was supported by grants from the Department of Defense Breast Cancer Program (W81XWH-062-0033), NIH/NINDS (R01 NS052484), and from AngioChem, Inc.

References

  1. 1.
    Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS. Breast cancer metastasis to the central nervous system. Am J Pathol. 2005;167:913–20.PubMedGoogle Scholar
  2. 2.
    Clayton AJ, Danson S, Jolly S, Ryder WD, Burt PA, Stewart AL, et al. Incidence of cerebral metastases in patients treated with trastuzumab for metastatic breast cancer. Br J Cancer. 2004;91:639–43.PubMedGoogle Scholar
  3. 3.
    Lin NU, Winer EP. Brain metastases: the HER2 paradigm. Clin Cancer Res. 2007;13:1648–55.CrossRefPubMedGoogle Scholar
  4. 4.
    Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res. 2008;68:3108–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Pottgen C, Eberhardt W, Grannass A, Korfee S, Stuben G, Teschler H, et al. Prophylactic cranial irradiation in operable stage IIIA non small-cell lung cancer treated with neoadjuvant chemoradiotherapy: results from a German multicenter randomized trial. J Clin Oncol. 2007;25:4987–92.CrossRefPubMedGoogle Scholar
  6. 6.
    Slotman B, Faivre-Finn C, Kramer G, Rankin E, Snee M, Hatton M, et al. Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med. 2007;357:664–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Addeo R, De Rosa C, Faiola V, Leo L, Cennamo G, Montella L, et al. Phase 2 trial of temozolomide using protracted low-dose and whole-brain radiotherapy for nonsmall cell lung cancer and breast cancer patients with brain metastases. Cancer. 2008;113:2524–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Cassier PA, Ray-Coquard I, Sunyach MP, Lancry L, Guastalla JP, Ferlay C, et al. A phase 2 trial of whole-brain radiotherapy combined with intravenous chemotherapy in patients with brain metastases from breast cancer. Cancer. 2008;113:2532–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Ekenel M, Hormigo AM, Peak S, Deangelis LM, Abrey LE. Capecitabine therapy of central nervous system metastases from breast cancer. J Neurooncol. 2007;85:223–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Lin NU, Carey LA, Liu MC, Younger J, Come SE, Ewend M, et al. Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol. 2008;26:1993–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Omuro AM, Raizer JJ, Demopoulos A, Malkin MG, Abrey LE. Vinorelbine combined with a protracted course of temozolomide for recurrent brain metastases: a phase I trial. J Neurooncol. 2006;78:277–80.CrossRefPubMedGoogle Scholar
  12. 12.
    Deeken JF, Loscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res. 2007;13:1663–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol. 2007;25:2295–305.CrossRefPubMedGoogle Scholar
  14. 14.
    Motl S, Zhuang Y, Waters CM, Stewart CF. Pharmacokinetic considerations in the treatment of CNS tumours. Clin Pharmacokinet. 2006;45:871–903.CrossRefPubMedGoogle Scholar
  15. 15.
    D.M. Peereboom. Chemotherapy in brain metastases. Neurosurgery. 57:S54–65; discussion S51–54 (2005).Google Scholar
  16. 16.
    Eiseman JL, Eddington ND, Leslie J, MacAuley C, Sentz DL, Zuhowski M, et al. Plasma pharmacokinetics and tissue distribution of paclitaxel in CD2F1 mice. Cancer Chemother Pharmacol. 1994;34:465–71.PubMedGoogle Scholar
  17. 17.
    Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH. Tissue distribution, metabolism and excretion of paclitaxel in mice. Anti Canc Drugs. 1996;7:78–86.CrossRefGoogle Scholar
  18. 18.
    Breedveld P, Beijnen JH, Schellens JH. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci. 2006;27:17–24.CrossRefPubMedGoogle Scholar
  19. 19.
    Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, Spruss T, et al. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest. 2002;110:1309–18.PubMedGoogle Scholar
  20. 20.
    Gallo JM, Li S, Guo P, Reed K, Ma J. The effect of P-glycoprotein on paclitaxel brain and brain tumor distribution in mice. Cancer Res. 2003;63:5114–7.PubMedGoogle Scholar
  21. 21.
    Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem. 2008;107:1518–28.CrossRefPubMedGoogle Scholar
  22. 22.
    Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2:3–14.CrossRefPubMedGoogle Scholar
  23. 23.
    Pardridge WM. Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjugate Chem. 2008;19:1327–38.CrossRefGoogle Scholar
  24. 24.
    de Boer AG, Gaillard PJ. Strategies to improve drug delivery across the blood-brain barrier. Clin Pharmacokinet. 2007;46:553–76.CrossRefPubMedGoogle Scholar
  25. 25.
    Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev. 2008;88:887–918.CrossRefPubMedGoogle Scholar
  26. 26.
    Bu G, Maksymovitch EA, Geuze H, Schwartz AL. Subcellular localization and endocytic function of low density lipoprotein receptor-related protein in human glioblastoma cells. J Biol Chem. 1994;269:29874–82.PubMedGoogle Scholar
  27. 27.
    Demeule M, Poirier J, Jodoin J, Bertrand Y, Desrosiers RR, Dagenais C, et al. High transcytosis of melanotransferrin (P97) across the blood-brain barrier. J Neurochem. 2002;83:924–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Pan W, Kastin AJ, Zankel TC, van Kerkhof P, Terasaki T, Bu G. Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. J Cell Sci. 2004;117:5071–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem. 2008;106:1534–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Demeule M, Regina A, Che C, Poirier J, Nguyen T, Gabathuler R, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther. 2008;324:1064–72.CrossRefPubMedGoogle Scholar
  31. 31.
    Regina A, Demeule M, Che C, Lavallee I, Poirier J, Gabathuler R, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol. 2008;155:185–97.CrossRefPubMedGoogle Scholar
  32. 32.
    Smith QR. Brain perfusion systems for studies of drug uptake and metabolism in the central nervous system. Pharm Biotech. 1996;8:285–307.Google Scholar
  33. 33.
    Smith QR. A review of blood-brain barrier transport techniques. Meth Mol Med. 2003;89:193–208.Google Scholar
  34. 34.
    Takasato Y, Rapoport SI, Smith QR. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol. 1984;247:H484–93.PubMedGoogle Scholar
  35. 35.
    Triguero D, Buciak J, Pardridge WM. Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins. J Neurochem. 1990;54:1882–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Palmieri D, Bronder JL, Herring JM, Yoneda T, Weil RJ, Stark AM, et al. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res. 2007;67:4190–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res. 2001;16:1486–95.CrossRefPubMedGoogle Scholar
  38. 38.
    Smith QR, Ziylan YZ, Robinson PJ, Rapoport SI. Kinetics and distribution volumes for tracers of different sizes in the brain plasma space. Brain Res. 1988;462:1–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Zlokovic BV, Ghiso J, Mackic JB, McComb JG, Weiss MH, Frangione B. Blood-brain barrier transport of circulating Alzheimer's amyloid beta. Biochem Biophys Res Comm. 1993;197:1034–40.CrossRefPubMedGoogle Scholar
  40. 40.
    Samii A, Bickel U, Stroth U, Pardridge WM. Blood-brain barrier transport of neuropeptides: analysis with a metabolically stable dermorphin analogue. Am J Physiol. 1994;267:E124–31.PubMedGoogle Scholar
  41. 41.
    Momma S, Aoyagi M, Rapoport SI, Smith QR. Phenylalanine transport across the blood-brain barrier as studied with the in situ brain perfusion technique. J Neurochem. 1987;48:1291–300.CrossRefPubMedGoogle Scholar
  42. 42.
    Smith QR, Momma S, Aoyagi M, Rapoport SI. Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem. 1987;49:1651–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Rousselle C, Smirnova M, Clair P, Lefauconnier JM, Chavanieu A, Calas B, et al. Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: saturation kinetics and specificity. J Pharmacol Exp Ther. 2001;296:124–31.PubMedGoogle Scholar
  44. 44.
    Yumoto R, Nishikawa H, Okamoto M, Katayama H, Nagai J, Takano M. Clathrin-mediated endocytosis of FITC-albumin in alveolar type II epithelial cell line RLE-6TN. Am J Physiol. 2006;290:L946–55.Google Scholar
  45. 45.
    Kim HR, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H, et al. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci. 2007;64:356–64.CrossRefPubMedGoogle Scholar
  46. 46.
    Visser CC, Stevanovic S, Heleen Voorwinden L, Gaillard PJ, Crommelin DJ, Danhof M, et al. Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro. J Drug Target. 2004;12:145–50.CrossRefPubMedGoogle Scholar
  47. 47.
    Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Del Rev. 2001;46:247–79.CrossRefGoogle Scholar
  48. 48.
    Pardridge WM, Kang YS, Buciak JL, Yang J. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm Res. 1995;12:807–16.CrossRefPubMedGoogle Scholar
  49. 49.
    Mandula H, Parepally JM, Feng R, Smith QR. Role of site-specific binding to plasma albumin in drug availability to brain. J Pharmacol Exp Ther. 2006;317:667–75.CrossRefPubMedGoogle Scholar
  50. 50.
    Parepally JM, Mandula H, Smith QR. Brain uptake of nonsteroidal anti-inflammatory drugs: ibuprofen, flurbiprofen, and indomethacin. Pharm Res. 2006;23:873–81.CrossRefPubMedGoogle Scholar
  51. 51.
    Kalvass JC, Maurer TS, Pollack GM. Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo p-glycoprotein efflux ratios. Drug Metab Dispos: the biological fate of chemicals. 2007;35:660–6.CrossRefGoogle Scholar
  52. 52.
    Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol. 2005;23:7794–803.CrossRefPubMedGoogle Scholar
  53. 53.
    Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H. Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf. 2007;6:609–21.CrossRefPubMedGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Fancy C. Thomas
    • 1
  • Kunal Taskar
    • 1
  • Vinay Rudraraju
    • 1
  • Satyanarayana Goda
    • 1
  • Helen R. Thorsheim
    • 1
  • Julie A. Gaasch
    • 1
    • 3
  • Rajendar K. Mittapalli
    • 1
  • Diane Palmieri
    • 2
  • Patricia S. Steeg
    • 2
  • Paul R. Lockman
    • 1
  • Quentin R. Smith
    • 1
  1. 1.Department of Pharmaceutical SciencesTexas Tech University Health Sciences CenterAmarilloUSA
  2. 2.Women’s Cancers Section, Laboratory of Molecular Pharmacology, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  3. 3.Department of Life, Earth and Environmental SciencesWest Texas A & M UniversityCanyonUSA

Personalised recommendations