Advertisement

Pharmaceutical Research

, Volume 26, Issue 9, pp 2066–2080 | Cite as

Anti-Cancer, Anti-Diabetic and Other Pharmacologic and Biological Activities of Penta-Galloyl-Glucose

  • Jinhui Zhang
  • Li Li
  • Sung-Hoon Kim
  • Ann E. Hagerman
  • Junxuan Lü
Expert Review

Abstract

1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose (PGG) is a polyphenolic compound highly enriched in a number of medicinal herbals. Several in vitro and a handful of in vivo studies have shown that PGG exhibits multiple biological activities which implicate a great potential for PGG in the therapy and prevention of several major diseases including cancer and diabetes. Chemically and functionally, PGG appears to be distinct from its constituent gallic acid or tea polyphenols. For anti-cancer activity, three published in vivo preclinical cancer model studies with PGG support promising efficacy to selectively inhibit malignancy without host toxicity. Potential mechanisms include anti-angiogenesis; anti-proliferative actions through inhibition of DNA replicative synthesis, S-phase arrest, and G1 arrest; induction of apoptosis; anti-inflammation; and anti-oxidation. Putative molecular targets include p53, Stat3, Cox-2, VEGFR1, AP-1, SP-1, Nrf-2, and MMP-9. For anti-diabetic activity, PGG and analogues appear to improve glucose uptake. However, very little is known about the absorption, pharmacokinetics, and metabolism of PGG, or its toxicity profile. The lack of a large quantity of highly pure PGG has been a bottleneck limiting in vivo validation of cancer preventive and therapeutic efficacies in clinically relevant models.

KEY WORDS

anti-angiogenesis anti-cancer anti-diabetes gallotannin polyphenols 

Notes

GRANT SUPPORT

This work was supported, in parts, by The Hormel Foundation, NIH grant CA136953 and by MRC grant (No. 2009-0063466) from Korea Ministry of Education, Science and Technology.

REFERENCES

  1. 1.
    Oh GS, Pae HO, Oh H, et al. In vitro anti-proliferative effect of 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells. Cancer Lett. 2001;174(1):17–24.PubMedCrossRefGoogle Scholar
  2. 2.
    Huh JE, Lee EO, Kim MS, et al. Penta-O-galloyl-beta-D-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis. 2005;26(8):1436–1445.PubMedCrossRefGoogle Scholar
  3. 3.
    Ren YM, Chen XZ. Distribution, bioactivities and therapeutical potentials of pentagalloylglucopyranose. Current Bioactive Compounds. 2007;3:81–89.CrossRefGoogle Scholar
  4. 4.
    Swain T, Bate-Smith EC. Flavonoid compounds. In: Florkin M, Mason HS, editors. Comparative biochemistry. New York: Academic; 1962. p. 755–809.Google Scholar
  5. 5.
    Yoshida T, Hatano T, Ito H. High molecular weight plant polyphenols (tannins): Prospective functions. Recent Advances in Phytochemistry; 2005. p. 163–190.Google Scholar
  6. 6.
    Nishizawa M, Yamagishi T, Nonaka G, Nishioka I, Bando H. Novel hydrolyzable tannins from Nuphar-Japonicum Dc. Chem Pharm Bull. 1982;30(3):1094–1097.Google Scholar
  7. 7.
    Niemetz R, Gross GG. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry. 2005;66(17):2001–2011.PubMedCrossRefGoogle Scholar
  8. 8.
    Cammann J, Denzel K, Schilling G, Gross GG. Biosynthesis of gallotannins: beta-glucogallin-dependent formation of 1, 2, 3, 4, 6-pentagalloylglucose by enzymatic galloylation of 1, 2, 3, 6-tetragalloylglucose. Arch Biochem Biophys. 1989;273(1):58–63.PubMedCrossRefGoogle Scholar
  9. 9.
    Grundhofer P, Niemetz R, Schilling G, Gross GG. Biosynthesis and subcellular distribution of hydrolyzable tannins. Phytochemistry. 2001;57(6):915–927.PubMedCrossRefGoogle Scholar
  10. 10.
    Niemetz R, Gross GG. Gallotannin biosynthesis: purification of beta-glucogallin: 1, 2, 3, 4, 6-pentagalloyl-beta-D-glucose galloyltransferase from sumac leaves. Phytochemistry. 1998;49(2):327–332.CrossRefGoogle Scholar
  11. 11.
    Hofmann AS, Gross GG. Biosynthesis of gallotannins: formation of polygalloylglucoses by enzymatic acylation of 1, 2, 3, 4, 6-penta-O-galloylglucose. Arch Biochem Biophys. 1990;283(2):530–532.PubMedCrossRefGoogle Scholar
  12. 12.
    Frohlich B, Niemetz R, Gross GG. Gallotannin biosynthesis: two new galloyltransferases from Rhus typhina leaves preferentially acylating hexa- and heptagalloylglucoses. Planta. 2002;216(1):168–172.PubMedCrossRefGoogle Scholar
  13. 13.
    Niemetz R, Gross GG. Oxidation of pentagalloylglucose to the ellagitannin, tellimagrandin II, by a phenol oxidase from Tellima grandiflora leaves. Phytochemistry. 2003;62(3):301–306.PubMedCrossRefGoogle Scholar
  14. 14.
    Niemetz R, Schilling G, Gross GG. Biosynthesis of the dimeric ellagitannin, cornusiin E, in Tellima grandiflora. Phytochemistry. 2003;64(1):109–114.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee SJ, Lee HK, Jung MK, Mar W. In vitro antiviral activity of 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose against hepatitis B virus. Biol Pharm Bull. 2006;29(10):2131–2134.PubMedCrossRefGoogle Scholar
  16. 16.
    Cavalher-Machado SC, Rosas EC, Brito Fde A, et al. The anti-allergic activity of the acetate fraction of Schinus terebinthifolius leaves in IgE induced mice paw edema and pleurisy. Int Immunopharmacol. 2008;8(11):1552–1560.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang F, Luo SY, Ye YB, et al. The antibacterial efficacy of an aceraceous plant [Shantung maple (Acer truncatum Bunge)] may be related to inhibition of bacterial beta-oxoacyl-acyl carrier protein reductase (FabG). Biotechnol Appl Biochem. 2008;51(Pt 2):73–78.PubMedCrossRefGoogle Scholar
  18. 18.
    Ahn MJ, Kim CY, Lee JS, et al. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Med. 2002;68(5):457–459.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang WC, Wang C, Song XY, Zhao WH, Wang Q. Determination of 1, 2, 3, 4, 6-penta-O-galloyl-D-glucose in forty four kinds of Chinese traditional medicines by HPLC. Zhongguo Zhong Yao Za Zhi. 2008;33(6):656–659.PubMedGoogle Scholar
  20. 20.
    Hagerman AE, Robbins CT, Weerasuriya Y, Wilson TC, McArthur C. Tannin chemistry in relation to digestion. J Range Manag. 1992;45:57–62.CrossRefGoogle Scholar
  21. 21.
    Chen Y, Hagerman AE. Characterization of soluble non-covalent complexes between bovine serum albumin and beta-1, 2, 3, 4, 6-penta-O-galloyl-D-glucopyranose by MALDI-TOF MS. J Agric Food Chem. 2004;52(12):4008–4011.PubMedCrossRefGoogle Scholar
  22. 22.
    Khanbabaee K, Lotzerich K. Efficient total synthesis of the natural products 2, 3, 4, 6-tetra-O-galloyl-d-glucopyranose, 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucopyranose and the unnatural 1, 2, 3, 4, 6-penta-O-galloyl-alpha-D-glucopyranose. Tetrahedron. 1997;53(31):10725–10732.CrossRefGoogle Scholar
  23. 23.
    Binkley RC, Ziepfel JC, Himmeldirk KB. Anomeric selectivity in the synthesis of galloyl esters of D-glucose. Carbohydr Res. 2009;344(2):237–239.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen YM, Hagerman AE, Minto RE. Preparation of 1, 2, 3, 4, 6-penta-O-galloyl-[U-C-14]-D-glucopyranose. J Label Compd Radiopharm. 2003;46(1):99–105.CrossRefGoogle Scholar
  25. 25.
    Skopec MM, Hagerman AE, Karasov WH. Do salivary proline-rich proteins counteract dietary hydrolyzable tannin in laboratory rats? J Chem Ecol. 2004;30(9):1679–1692.PubMedCrossRefGoogle Scholar
  26. 26.
    Cai K, Hagerman AE, Minto RE, Bennick A. Decreased polyphenol transport across cultured intestinal cells by a salivary proline-rich protein. Biochem Pharmacol. 2006;71(11):1570–1580.PubMedCrossRefGoogle Scholar
  27. 27.
    Hagerman AE, Rice ME, Ritchard NT. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin(16) (4 -> 8) catechin (procyanidin). J Agric Food Chem. 1998;46(7):2590–2595.CrossRefGoogle Scholar
  28. 28.
    Hu H, Lee HJ, Jiang C, et al. Penta-1, 2, 3, 4, 6-O-galloyl-beta-D-glucose induces p53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol Cancer Ther. 2008;7(9):2681–2691.PubMedCrossRefGoogle Scholar
  29. 29.
    Nakagawa H, Hasumi K, Woo JT, Nagai K, Wachi M. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate. Carcinogenesis. 2004;25(9):1567–1574.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee KW, Hur HJ, Lee HJ, Lee CY. Antiproliferative effects of dietary phenolic substances and hydrogen peroxide. J Agric Food Chem. 2005;53(6):1990–1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Kuo PT, Lin TP, Liu LC, et al. Penta-O-galloyl-beta-D-glucose suppresses prostate cancer bone metastasis by transcriptionally repressing EGF-induced MMP-9 expression. J Agric Food Chem. 2009;57(8):3331–3339.PubMedCrossRefGoogle Scholar
  32. 32.
    Miyamoto K, Kishi N, Koshiura R, Yoshida T, Hatano T, Okuda T. Relationship between the structures and the antitumor activities of tannins. Chem Pharm Bull. 1987;35(2):814–822.PubMedGoogle Scholar
  33. 33.
    Lee HH, Ho CT, Lin JK. Theaflavin-3, 3′-digallate and penta-O-galloyl-beta-D-glucose inhibit rat liver microsomal 5alpha-reductase activity and the expression of androgen receptor in LNCaP prostate cancer cells. Carcinogenesis. 2004;25(7):1109–1118.PubMedCrossRefGoogle Scholar
  34. 34.
    Hu H, Zhang J, Lee HJ, Kim SH, Lu J. Penta-O-galloyl-beta-D-glucose induces S- and G(1)-cell cycle arrests in prostate cancer cells targeting DNA replication and cyclin D1. Carcinogenesis. 2009;30(5):818–823.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen WJ, Chang CY, Lin JK. Induction of G1 phase arrest in MCF human breast cancer cells by pentagalloylglucose through the down-regulation of CDK4 and CDK2 activities and up-regulation of the CDK inhibitors p27(Kip) and p21(Cip). Biochem Pharmacol. 2003;65(11):1777–1785.PubMedGoogle Scholar
  36. 36.
    Hua KT, Way TD, Lin JK. Pentagalloylglucose inhibits estrogen receptor alpha by lysosome-dependent depletion and modulates ErbB/PI3K/Akt pathway in human breast cancer MCF-7 cells. Mol Carcinog. 2006;45(8):551–560.PubMedCrossRefGoogle Scholar
  37. 37.
    Pan MH, Lin JH, Lin-Shiau SY, Lin JK. Induction of apoptosis by penta-O-galloyl-beta-D-glucose through activation of caspase-3 in human leukemia HL-60 cells. Eur J Pharmacol. 1999;381(2–3):171–183.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen WJ, Lin JK. Induction of G1 arrest and apoptosis in human jurkat T cells by pentagalloylglucose through inhibiting proteasome activity and elevating p27Kip1, p21Cip1/WAF1, and Bax proteins. J Biol Chem. 2004;279(14):13496–13505.PubMedCrossRefGoogle Scholar
  39. 39.
    Ho LL, Chen WJ, Lin-Shiau SY, Lin JK. Penta-O-galloyl-beta-D-glucose inhibits the invasion of mouse melanoma by suppressing metalloproteinase-9 through down-regulation of activator protein-1. Eur J Pharmacol. 2002;453(2–3):149–158.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee SJ, Lee HM, Ji ST, Lee SR, Mar W, Gho YS. 1, 2, 3, 4, 6-Penta-O-galloyl-beta-D-glucose blocks endothelial cell growth and tube formation through inhibition of VEGF binding to VEGF receptor. Cancer Lett. 2004;208(1):89–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Kitagawa S, Nabekura T, Nakamura Y, Takahashi T, Kashiwada Y. Inhibition of P-glycoprotein function by tannic acid and pentagalloylglucose. J Pharm Pharmacol. 2007;59(7):965–969.PubMedCrossRefGoogle Scholar
  42. 42.
    Liu X, Kim JK, Li Y, Li J, Liu F, Chen X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3 T3–L1 cells. J Nutr. 2005;135(2):165–171.PubMedGoogle Scholar
  43. 43.
    Li Y, Kim J, Li J, et al. Natural anti-diabetic compound 1, 2, 3, 4, 6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway. Biochem Biophys Res Commun. 2005;336(2):430–437.PubMedCrossRefGoogle Scholar
  44. 44.
    Riedl KM, Hagerman AE. Tannin-protein complexes as radical scavengers and radical sinks. J Agric Food Chem. 2001;49(10):4917–4923.PubMedCrossRefGoogle Scholar
  45. 45.
    Abdelwahed A, Bouhlel I, Skandrani I, et al. Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Confirmation by microarray expression profiling. Chem Biol Interact. 2007;165(1):1–13.PubMedCrossRefGoogle Scholar
  46. 46.
    Okubo T, Nagai F, Seto T, Satoh K, Ushiyama K, Kano I. The inhibition of phenylhydroquinone-induced oxidative DNA cleavage by constituents of Moutan Cortex and Paeoniae Radix. Biol Pharm Bull. 2000;23(2):199–203.PubMedGoogle Scholar
  47. 47.
    Park EJ, Zhao YZ, An RB, Kim YC, Sohn DH. 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose from Galla Rhois protects primary rat hepatocytes from necrosis and apoptosis. Planta Med. 2008;74(11):1380–1383.PubMedCrossRefGoogle Scholar
  48. 48.
    Okuda T, Mori K, Hayatsu H. Inhibitory effect of tannins on direct-acting mutagens. Chem Pharm Bull. 1984;32(9):3755–3758.PubMedGoogle Scholar
  49. 49.
    Dinkova-Kostova AT, Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res. 2008;52(Suppl 1):S128–S138.PubMedGoogle Scholar
  50. 50.
    Choi BM, Kim HJ, Oh GS, et al. 1, 2, 3, 4, 6-Penta-O-galloyl-beta-D-glucose protects rat neuronal cells (Neuro 2A) from hydrogen peroxide-mediated cell death via the induction of heme oxygenase-1. Neurosci Lett. 2002;328(2):185–189.PubMedCrossRefGoogle Scholar
  51. 51.
    Pae HO, Oh GS, Jeong SO, et al. 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose up-regulates heme oxygenase-1 expression by stimulating Nrf2 nuclear translocation in an extracellular signal-regulated kinase-dependent manner in HepG2 cells. World J Gastroenterol. 2006;12(2):214–221.PubMedGoogle Scholar
  52. 52.
    Bhimani RS, Troll W, Grunberger D, Frenkel K. Inhibition of oxidative stress in Hela-cells by chemopreventive agents. Cancer Research. 1993;53(19):4528–4533.PubMedGoogle Scholar
  53. 53.
    Feldman KS, Sahasrabudhe K, Smith RS, Scheuchenzuber WJ. Immunostimulation by plant polyphenols: a relationship between tumor necrosis factor-alpha production and tannin structure. Bioorg Med Chem Lett. 1999;9(7):985–990.PubMedCrossRefGoogle Scholar
  54. 54.
    Feldman KS, Sahasrabudhe K, Lawlor MD, Wilson SL, Lang CH, Scheuchenzuber WJ. In vitro and In vivo inhibition of LPS-stimulated tumor necrosis factor-alpha secretion by the gallotannin beta-D-pentagalloylglucose. Bioorg Med Chem Lett. 2001;11(14):1813–1815.PubMedCrossRefGoogle Scholar
  55. 55.
    Wu M, Gu Z. Screening of bioactive compounds from moutan cortex and their anti-inflammatory activities in rat synoviocytes. Evid Based Complement Alternat Med. 2009;6(1):57–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Genfa L, Jiang Z, Hong Z, et al. The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology. Int Immunopharmacol. 2005;5(6):1007–1017.PubMedCrossRefGoogle Scholar
  57. 57.
    Oh GS, Pae HO, Choi BM, et al. Penta-O-galloyl-beta-D-glucose inhibits phorbol myristate acetate-induced interleukin-8 [correction of intereukin-8] gene expression in human monocytic U937 cells through its inactivation of nuclear factor-kappaB. Int Immunopharmacol. 2004;4(3):377–386.PubMedCrossRefGoogle Scholar
  58. 58.
    Lee SH, Park HH, Kim JE, et al. Allose gallates suppress expression of pro-inflammatory cytokines through attenuation of NF-kappaB in human mast cells. Planta Med. 2007;73(8):769–773.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee SJ, Lee IS, Mar W. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose in murine macrophage cells. Arch Pharm Res. 2003;26(10):832–839.PubMedCrossRefGoogle Scholar
  60. 60.
    Kang DG, Moon MK, Choi DH, Lee JK, Kwon TO, Lee HS. Vasodilatory and anti-inflammatory effects of the 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose (PGG) via a nitric oxide-cGMP pathway. Eur J Pharmacol. 2005;524(1–3):111–119.PubMedCrossRefGoogle Scholar
  61. 61.
    Pan MH, Lin-Shiau SY, Ho CT, Lin JH, Lin JK. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3, 3'-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages. Biochem Pharmacol. 2000;59(4):357–367.PubMedCrossRefGoogle Scholar
  62. 62.
    Yokozawa T, Chen CP, Tanaka T, Kitani K. A study on the nitric oxide production-suppressing activity of Sanguisorbae Radix components. Biol Pharm Bull. 2000;23(6):717–722.PubMedGoogle Scholar
  63. 63.
    Park JK, Cho HJ, Lim Y, Cho YH, Lee CH. Hypocholestrolemic effect of CJ90002 in hamsters: a potent inhibitor for squalene synthase from Paeonia moutan. J Microbiol Biotechnol. 2002;12(2):222–227.Google Scholar
  64. 64.
    Ono K, Sawada T, Murata Y, et al. Pentagalloylglucose, an antisecretory component of Paeoniae radix, inhibits gastric H+, K(+)-ATPase. Clin Chim Acta. 2000;290(2):159–167.PubMedCrossRefGoogle Scholar
  65. 65.
    Isenburg JC, Simionescu DT, Starcher BC, Vyavahare NR. Elastin stabilization for treatment of abdominal aortic aneurysms. Circulation. 2007;115(13):1729–1737.PubMedCrossRefGoogle Scholar
  66. 66.
    Tedder ME, Liao J, Weed B, et al. Stabilized Collagen Scaffolds for heart valve tissue engineering. Tissue Eng Part A. 2008.Google Scholar
  67. 67.
    Goto H, Shimada Y, Akechi Y, Kohta K, Hattori M, Terasawa K. Endothelium-dependent vasodilator effect of extract prepared from the roots of Paeonia lactiflora on isolated rat aorta. Planta Med. 1996;62(5):436–439.PubMedCrossRefGoogle Scholar
  68. 68.
    Dong H, Chen SX, Kini RM, Xu HX. Effects of tannins from Geum japonicum on the catalytic activity of thrombin and factor Xa of blood coagulation cascade. J Nat Products. 1998;61(11):1356–1360.CrossRefGoogle Scholar
  69. 69.
    Liu JC, Hsu FL, Tsai JC, et al. Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci. 2003;73(12):1543–1555.PubMedCrossRefGoogle Scholar
  70. 70.
    Sugaya A, Suzuki T, Sugaya E, Yuyama N, Yasuda K, Tsuda T. Inhibitory effect of peony root extract on pentylenetetrazol-induced EEG power spectrum changes and extracellular calcium concentration changes in rat cerebral cortex. J Ethnopharmacol. 1991;33(1–2):159–167.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee JH, Yehl M, Ahn KS, Kim SH, Lieske JC. 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose attenuates renal cell migration, hyaluronan expression, and crystal adhesion. Eur J Pharmacol. 2009;606(1–3):32–37.PubMedCrossRefGoogle Scholar
  72. 72.
    Duan D, Li Z, Luo H, Zhang W, Chen L, Xu X. Antiviral compounds from traditional Chinese medicines Galla Chinese as inhibitors of HCV NS3 protease. Bioorg Med Chem Lett. 2004;14(24):6041–6044.PubMedCrossRefGoogle Scholar
  73. 73.
    Takechi M, Tanaka Y, Takehara M, Nonaka G, Nishioka I. Structure and antiherpetic activity among the tannins. Phytochemistry. 1985;24(10):2245–2250.CrossRefGoogle Scholar
  74. 74.
    Nakashima H, Ichiyama K, Hirayama F, et al. Sulfated pentagalloyl glucose (Y-ART-3) inhibits HIV replication and cytopathic effects in vitro, and reduces HIV infection in hu-PBL-SCID mice. Antivir Res. 1996;30(2–3):95–108.PubMedCrossRefGoogle Scholar
  75. 75.
    Cannell RJ, Farmer P, Walker JM. Purification and characterization of pentagalloylglucose, and alpha-glucosidase inhibitor/antibiotic from the freshwater green alga Spirogyra varians. Biochem J. 1988;255(3):937–941.PubMedGoogle Scholar
  76. 76.
    Park E, Lee NH, Baik JS, Jee Y. Elaeocarpus sylvestris modulates gamma-ray-induced immunosuppression in mice: implications in radioprotection. Phytother Res. 2008;22(8):1046–1051.PubMedCrossRefGoogle Scholar
  77. 77.
    Adachi H, Konishi K, Horikoshi I. The effects of 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose on rat liver mitochondrial respiration. Chem Pharm Bull (Tokyo). 1989;37(5):1341–1344.Google Scholar
  78. 78.
    Toda M, Kawabata J, Kasai T. Inhibitory effects of ellagi- and gallotannins on rat intestinal alpha-glucosidase complexes. Biosci Biotechnol Biochem. 2001;65(3):542–547.PubMedCrossRefGoogle Scholar
  79. 79.
    Li XC, Joshi AS, ElSohly HN, et al. Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies. J Nat Prod. 2002;65(12):1909–1914.PubMedCrossRefGoogle Scholar
  80. 80.
    Hayashi T, Nagayama K, Arisawa M, et al. Pentagalloylglucose, a xanthine oxidase inhibitor from a Paraguayan crude drug, “Molle-i” (Schinus terebinthifolius). J Nat Prod. 1989;52(1):210–211.PubMedCrossRefGoogle Scholar
  81. 81.
    Kiss AK, Derwinska M, Dawidowska A, Naruszewicz M. Novel biological properties of Oenothera paradoxa defatted seed extracts: effects on metallopeptidase activity. J Agric Food Chem. 2008;56(17):7845–7852.PubMedCrossRefGoogle Scholar
  82. 82.
    Gyemant G, Zajacz A, Becsi B, et al. Evidence for pentagalloyl glucose binding to human salivary alpha-amylase through aromatic amino acid residues. Biochim Biophys Acta. 2009;1794(2):291–296.PubMedGoogle Scholar
  83. 83.
    Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci. 2005;62(15):1707–1723.PubMedCrossRefGoogle Scholar
  84. 84.
    Nithitanakool S, Pithayanukul P, Bavovada R, Saparpakorn P. Molecular docking studies and anti-tyrosinase activity of Thai mango seed kernel extract. Molecules. 2009;14(1):257–265.PubMedCrossRefGoogle Scholar
  85. 85.
    Takechi M, Tanaka Y. Binding of 1, 2, 3, 4, 6-pentagalloylglucose to proteins, lipids, nucleic-acids and sugars. Phytochemistry. 1987;26(1):95–97.CrossRefGoogle Scholar
  86. 86.
    He Q, Shi B, Yao K. Interactions of gallotannins with proteins, amino acids, phospholipids and sugars. Food Chemistry. 2006;95(2):250–254.CrossRefGoogle Scholar
  87. 87.
    Hagerman AE, Butler LG. The specificity of proanthocyanidin-protein interactions. J Biol Chem. 1981;256(9):4494–4497.PubMedGoogle Scholar
  88. 88.
    Hofmann T, Glabasnia A, Schwarz B, Wisman KN, Gangwer KA, Hagerman AE. Protein binding and astringent taste of a polymeric procyanidin, 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucopyranose, castalagin, and grandinin. J Agric Food Chem. 2006;54(25):9503–9509.PubMedCrossRefGoogle Scholar
  89. 89.
    Baxter NJ, Lilley TH, Haslam E, Williamson MP. Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry. 1997;36(18):5566–5577.PubMedCrossRefGoogle Scholar
  90. 90.
    Mehansho HB, Larry G, Carlson DM. Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms. Annu Rev Nutr. 1987;7:423–440.PubMedCrossRefGoogle Scholar
  91. 91.
    Chen YM, Hagerman AE. Reaction pH and protein affect the oxidation products of beta-pentagalloyl glucose. Free Radic Res. 2005;39(2):117–124.PubMedCrossRefGoogle Scholar
  92. 92.
    Ren Y, Himmeldirk K, Chen X. Synthesis and structure-activity relationship study of antidiabetic penta-O-galloyl-D-glucopyranose and its analogues. J Med Chem. 2006;49(9):2829–2837.PubMedCrossRefGoogle Scholar
  93. 93.
    Cai K, Bennick A. Effect of salivary proteins on the transport of tannin and quercetin across intestinal epithelial cells in culture. Biochem Pharmacol. 2006;72(8):974–980.PubMedCrossRefGoogle Scholar
  94. 94.
    Aguilar CN, Gutierrez-Sanchez G. Review: sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci Technol Int. 2001;7(5):373–382.Google Scholar
  95. 95.
    Vaquero I, Marcobal A, Munoz R. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol. 2004;96(2):199–204.PubMedCrossRefGoogle Scholar
  96. 96.
    Kwon T, Shim S, Lee J. Characterization of lactobacilli with tannase activity isolated from Kimchi. Food Sci Biotechnol. 2008;17(6):1322–1326.Google Scholar
  97. 97.
    Nishitani Y, Sasaki E, Fujisawaz T, Osawa R. Genotypic analyses of lactobacilli with a range of tannase activities isolated from human feces and fermented foods. Syst Appl Microbiol. 2004;27(1):109–117.PubMedCrossRefGoogle Scholar
  98. 98.
    Noguchi N, Ohashi T, Shiratori T, et al. Association of tannase-prodncing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene. J Gastroenterol. 2007;42(5):346–351.PubMedCrossRefGoogle Scholar
  99. 99.
    Mehansho H, Hagerman A, Clements S, Butler L, Rogler J, Carlson DM. Modulation of proline-rich protein-biosynthesis in rat parotid-glands by sorghums with high tannin levels. Proc Natl Acad Sci USA-Biol Sci. 1983;80(13):3948–3952.CrossRefGoogle Scholar
  100. 100.
    Nishizawa M, Yamagishi T, Nonaka G, Nishioka I, Nagasawa T, Oura H. Tannins and related compounds. XII. Isolation and characterization of galloylglucoses from Paeoniae Radix and their effects on urea-nitrogen concentration in rat serum. Chem Pharm Bull (Tokyo). 1983;31(8):2593–2600.Google Scholar
  101. 101.
    Riedl KM, Carando S, Alessio HM, McCarthy M*, Hagerman AE. Antioxidant activity of tannins and tannin-protein complexes: assessment in vitro and in vivo. In: Morello M, Shahadi F, editors. Free radicals in foods: chemistry, nutrition and health. Washington, DC: American Chemical Society; 2002. p. 188–200.CrossRefGoogle Scholar
  102. 102.
    Isenburg JC, Karamchandani NV, Simionescu DT, Vyavahare NR. Structural requirements for stabilization of vascular elastin by polyphenolic tannins. Biomaterials. 2006;27(19):3645–3651.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The Hormel InstituteUniversity of MinnesotaAustinUSA
  2. 2.Cancer Preventive Material Development Research Center and Institute, College of Oriental MedicineKyunghee UniversitySeoulRepublic of Korea
  3. 3.Department of Chemistry & BiochemistryMiami UniversityOxfordUSA

Personalised recommendations