Pharmaceutical Research

, Volume 26, Issue 9, pp 2093–2100 | Cite as

Powder Dissolution Method for Estimating Rotating Disk Intrinsic Dissolution Rates of Low Solubility Drugs

  • Konstantin Tsinman
  • Alex Avdeef
  • Oksana Tsinman
  • Dmytro Voloboy
Research Paper



The objective was to investigate the applicability and limitations of a novel approach for measuring intrinsic dissolution rates (IDR) of very small quantities of compounds introduced as powders to buffered solutions and comparing these results to disk IDR obtained using the traditional Wood’s apparatus.


The powder dissolution profiles of 13 model drugs were determined at 37°C in USP buffers at pH 1.2, 4.5, and 6.8, stirred at 100 RPM. As little as 0.06 mg of drug were added to 1 mL buffer media. Drug concentration was measured by an in situ fiber optic UV method. The results were converted to rotating disk IDR values by a novel mathematical procedure.


The comparison of the powder-based IDR values to those obtained by traditional Wood’s apparatus indicated r2 = 0.97 (n = 26).


The results demonstrate that using potentially 10,000-fold less drug material does not sacrifice the quality of the measurement, and lends support to an earlier study that the disk IDR measurement may possibly serve as a surrogate for the BCS solubility classification.

Key words

Biopharmaceutics classification system Low solubility Powder IDR Rotating disk intrinsic dissolution rate Wood’s apparatus 



We thank Christel Bergström and Per Artursson of Uppsala University and Per Nielsen of pION for helpful discussions and suggestions regarding the API-sparing dissolution methodology.


  1. 1.
    Guidance for Industry. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. Washington, D.C., USA: FDA; 2000.Google Scholar
  2. 2.
    Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–420.PubMedCrossRefGoogle Scholar
  3. 3.
    Kostewicz ES, Wunderlich M, Brauns U, Becker R, Bock T, Dressman JB. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol. 2004;56:43–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Yu LX, Carlin AS, Amidon GL, Hussain AS. Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs. Int J Pharm. 2004;270:221–227.PubMedCrossRefGoogle Scholar
  5. 5.
    Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15:11–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Wood JH, Syarto JE, Letterman H. Improved holder for disk intrinsic dissolution rate studies. J Pharm Sci. 1965;54:1068.PubMedCrossRefGoogle Scholar
  7. 7.
    Serajuddin ATM, Jarowski CI. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical bases and their hydrochloride salts I: phenazopyridine. J Pharm Sci. 1985;74:142–147.PubMedCrossRefGoogle Scholar
  8. 8.
    Jinno J, Oh D-M, Crison JR, Amidon GL. Dissolution of ionizable water-insoluble drugs: the combined effect of pH and surfactant J. Pharm Sci. 2000;89:268–274.CrossRefGoogle Scholar
  9. 9.
    The United States Pharmacopeia (USP 32). United States Pharmacopeial Convention, Inc., Rockville, MD, 2009.Google Scholar
  10. 10.
    Noyes AS, Whitney WR. The rate of solution of solid substances in their own solutions. J Amer Chem Soc. 1897;19:930–934.CrossRefGoogle Scholar
  11. 11.
    Avdeef A, Tsinman O. Miniaturized rotating disk intrinsic dissolution rate measurement: effects of buffer capacity in comparisons to traditional Wood’s apparatus. Pharm. Res. 2008;25:2613–2627.PubMedCrossRefGoogle Scholar
  12. 12.
    Avdeef A, Tsinman K, Tsinman O, Sun N, Voloboy D. Miniaturization of Powder Dissolution Measurement and Estimation of Particle Size. Chem. Biodiv. 2009. In press.Google Scholar
  13. 13.
    Avdeef A. Solubility of sparingly-soluble drugs. Dressman J, Reppas C. (Eds., special issue: The Importance of Drug Solubility). Adv. Drug Deliv. Rev. 2007, 59, 568–590.Google Scholar
  14. 14.
    Bijlani V, Yuonaye D, Katpally S, Chukwumezie BN, Adeyeye MC. Monitoring ibuprofen release from multiparticulates: in situ fiber-optic technique versus the HPLC method. AAPS Pharm.Sci.Tech. 2007, 8, Article 52 (
  15. 15.
    Pedersen PV, Brown KF. Theoretical isotropic dissolution of nonspherical particles. J Pharm Sci. 1976;85:1437–1442.CrossRefGoogle Scholar
  16. 16.
    Carstensen JT, Advanced Pharmaceutical Solids. Marcel Dekker, New York, 2001, pp. 51–88, 191–208.Google Scholar
  17. 17.
    Mosharraf M, Nyström C. The effect of particle size and shape on the surface specific dissolution rate of micronized practically insoluble drugs. Int J Pharm. 1995;122:35–47.CrossRefGoogle Scholar
  18. 18.
    Galli C. Experimental determination of the diffusion boundary layer with micron and submicron particles. Int J Pharm. 2006;313:114–122.PubMedCrossRefGoogle Scholar
  19. 19.
    Jashnani RN, Byron PR, Dalby RN. Validation of an improved Wood’s rotating disk dissolution apparatus. J. Pharm. Sci. 1993;82:670–671.PubMedCrossRefGoogle Scholar
  20. 20.
    Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the Biopharmaceutics Classification System. Int J Pharm. 2006;321:1–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Nernst W. Theorie der reaktionsgeschwindigkeit in heterogenen systemen. Z Phys Chem. 1904;47:52–55.Google Scholar
  22. 22.
    Brünner E. Reaktionsgeschwindigkeit in heterogenen systemen. Z Phys Chem. 1904;47:56–102.Google Scholar
  23. 23.
    Hixson A, Crowell J. Dependence of reaction velocity upon surface and agitation. I. Theoretical considerations. Ind Eng Chem. 1931;23:923–931.CrossRefGoogle Scholar
  24. 24.
    Higuchi WI, Hiestand EN. Dissoluiton rates of finely divided powders I. Effect of particle sizes in a diffusion process. J Pharm Sci. 1963;52:67–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Pedersen PV, Brown KF. General class of multiparticulate dissolution models. J Pharm Sci. 1975;64:1435–1438.CrossRefGoogle Scholar
  26. 26.
    Lu AT, Frisella ME, Johnson KC. Dissolution modelling: factors affecting the dissolution rates of polydisperse powders. Pharm Res. 1993;10:1308–1314.PubMedCrossRefGoogle Scholar
  27. 27.
    Tinke AP, Vanhoutte K, De Maesschalck R, Verheyen S, De Winter H. A new approach in the prediction of the dissolution behaviour of suspended particles by means of the particle size distribution. J Pharm Biomed Anal. 2005;39:900–907.PubMedCrossRefGoogle Scholar
  28. 28.
    Okazaki A, Mano T, Sugano K. The theoretical model of poly-disperse drug particles in biorelevant media. J Pharm Sci. 2008;97:1843–1852.PubMedCrossRefGoogle Scholar
  29. 29.
    Levich VG. Physiochemical Hydrodynamics. Englewood Cliffs, N. J: Prentice-Hall; 1962. p. 39–72.Google Scholar
  30. 30.
    Avdeef A, Absorption and Drug Development. Wiley-Interscience. NJ: Hoboken; 2003.Google Scholar
  31. 31.
    Sheng JJ, Kasim NA, Chandrasekharan R, Amidon GL. Solubilization and dissolution of insoluble weak acid, ketoprofen: effect of pH combined with surfactant. Eur J Pharm Sci. 2006;29:306–314.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Konstantin Tsinman
    • 1
  • Alex Avdeef
    • 1
  • Oksana Tsinman
    • 1
  • Dmytro Voloboy
    • 1
  1. 1.pION INCWoburnUSA

Personalised recommendations