Pharmaceutical Research

, Volume 26, Issue 8, pp 1995–2001 | Cite as

Drug Delivery to the Skin From Sub-micron Polymeric Particle Formulations: Influence of Particle Size and Polymer Hydrophobicity

  • Xiao Wu
  • Bruno Biatry
  • Colette Cazeneuve
  • Richard H. Guy
Research Paper



To investigate the influence of particle size and polymer properties on the topical delivery of a lipophilic “active” species (Nile Red (NR)) from sub-micron polymeric particles.


Three poly-(ε-caprolactone) (CAPA) formulations were examined to assess the impact of particle size. Three other formulations, based on cellulose acetate butyrate (CAB), CAPA and polystyrene were studied to address the role of polymer hydrophobicity. In vitro skin permeation, and confocal microscopy and stratum corneum (SC) tape-stripping were used to evaluate the cutaneous disposition of NR.


NR delivery into the SC was greater from the larger particles, the overall smaller surface area of which enhanced the “leaving tendency” of the lipophilic “active”. Skin uptake of NR (measured as “%payload released”) from polystyrene, CAPA and CAB particles increased with decreasing polymer hydrophobicity (polystyrene > CAPA > CAB) as expected. Confocal microscopy revealed that NR released from the particles accumulated in, and penetrated via, lipid domains between the SC corneocytes. The particles showed affinity for hairs, and concentrated on the skin surface at the follicular openings.


Delivery of a model drug to the skin from sub-micron polymeric particle formulations is sensitive to the particle size and the relative hydrophobicity of the carrier.


laser scanning confocal microscopy (LSCM) skin sub-micron particles tape-stripping 



cellulose acetate butyrate




laser scanning confocal microscopy


Nile Red


polydispersity index




stratum corneum


transepidermal water loss



Supported by the European Commission 6th Research and Technological Development Framework Programme (NAPOLEON: NAnostructured waterborne POLymEr films with OutstaNding properties) and a University Research Scholarship for Xiao Wu.


  1. 1.
    Magdassi S. Delivery systems in cosmetics. Colloids Surf, A: Physicochem Eng Aspects. 1997;123-124:671–9. doi: 10.1016/S0927-7757(97)03792-8.Google Scholar
  2. 2.
    Luppi B, Cerchiara T, Bigucci F, Basile R, Zecchi V. Polymeric nanoparticles composed of fatty acids and polyvinylalcohol for topical application of sunscreens. J Pharm Pharmacol. 2004;56:407–11. doi: 10.1211/0022357022926.PubMedCrossRefGoogle Scholar
  3. 3.
    Kaur IP, Agrawal R. Nanotechnology: a new paradigm in cosmeceuticals. Recent Pat Drug Deliv Formul. 2007;1:171–82. doi: 10.2174/187221107780831888.PubMedCrossRefGoogle Scholar
  4. 4.
    Shefer A, Shefer S. Controlled delivery system for hair care products. U.S. patent 6,491,902.Google Scholar
  5. 5.
    Soane DS, Linford MR. Nanoscopic hair care products. U.S. patent 6,821,509.Google Scholar
  6. 6.
    Quellet C, Hotz J, Balmer M. Polymeric nanoparticles including olfactive components. U.S. patent 7,205,340.Google Scholar
  7. 7.
    Alvarez-Roman R, Barre G, Guy RH, Fessi H. Biodegradable polymer nanocapsules containing a sunscreen agent: preparation and photoprotection. Eur J Pharm Biopharm. 2001;52:191–5. doi: 10.1016/S0939-6411(01)00188-6.PubMedCrossRefGoogle Scholar
  8. 8.
    Wertz PW, Downing DT. Stratum corneum: biological and biochemical considerations. In: Hadgraft J, Guy RH, editors. Transdermal drug delivery. New York: Marcel Dekker, Inc; 1989. p. 1–22.Google Scholar
  9. 9.
    Downing DT, Stewart ME, Wertz PW, Colton SW, Abraham W, Strauss JS. Skin lipids: an update. J Invest Dermatol. 1987;88:2s–6s. doi: 10.1111/1523-1747.ep12468850.PubMedCrossRefGoogle Scholar
  10. 10.
    Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9:663–9. doi: 10.1023/A:1015810312465.PubMedCrossRefGoogle Scholar
  11. 11.
    Chernysheva YV, Babak VG, Kildeeva NR, Boury F, Benoit JP, Ubrich N, et al. Effect of the type of hydrophobic polymers on the size of nanoparticles obtained by emulsification - solvent evaporation. Mendeleev Commun. 2003;13:65–7. doi: 10.1070/MC2003v013n02ABEH001690.CrossRefGoogle Scholar
  12. 12.
    Kalia YN, Pirot F, Guy RH. Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneum in vivo. Biophys J. 1996;71:2692–700. doi: 10.1016/S0006-3495(96)79460-2.PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson RL, Cassidy JM. Variation in physical dimensions and chemical composition of human stratum corneum. J Invest Dermatol. 1973;61:30–2. doi: 10.1111/1523-1747.ep12674117.PubMedCrossRefGoogle Scholar
  14. 14.
    Kalia YN, Alberti I, Sekkat N, Curdy C, Naik A, Guy RH. Normalization of stratum corneum barrier function and transepidermal water loss in vivo. Pharm Res. 2000;17:1148–50. doi: 10.1023/A:1026474200575.PubMedCrossRefGoogle Scholar
  15. 15.
    Kalia YN, Alberti I, Naik A, Guy RH. Assessment of topical bioavailability in vivo: the importance of stratum corneum thickness. Skin Pharmacol Appl Skin Physiol. 2001;14(Suppl 1):82–6. doi: 10.1159/000056394.PubMedGoogle Scholar
  16. 16.
    Jenning V, Gysler A, Schafer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm. 2000;49:211–8. doi: 10.1016/S0939-6411(99)00075-2.PubMedCrossRefGoogle Scholar
  17. 17.
    Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99:53–62. doi: 10.1016/j.jconrel.2004.06.015.PubMedCrossRefGoogle Scholar
  18. 18.
    Shotton DM. Confocal scanning optical microscopy and its application for biological specimens. J Cell Sci. 1989;94:175–206.Google Scholar
  19. 19.
    Christophers E. Cellular architecture of the stratum corneum. J Invest Dermatol. 1971;56:165–9. doi: 10.1111/1523-1747.ep12260765.PubMedCrossRefGoogle Scholar
  20. 20.
    Mackenzie JC. Ordered structure of the stratum corneum of mammalian skin. Nature. 1969;222:881–2. doi: 10.1038/222881a0.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoogstraate AJ, Cullander C, Nagelkerke JF, Spies F, Verhoef J, Schrijvers AHGJ, et al. A novel in-situ model for continuous observation of transient drug concentration gradients across buccal epithelium at the microscopical level. J Control Release. 1996;39:71–8. doi: 10.1016/0168-3659(95)00140-9.CrossRefGoogle Scholar
  22. 22.
    Laurent M, Johannin G, Gillbert N, Lucas L, Cassio D, Petit PX, et al. Power and limits of laser scanning confocal microscopy. Biol Cell. 1994;80:229–40. doi: 10.1016/0248-4900(94)90046-9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiao Wu
    • 1
    • 2
  • Bruno Biatry
    • 3
  • Colette Cazeneuve
    • 4
  • Richard H. Guy
    • 1
  1. 1.Department of Pharmacy & PharmacologyUniversity of BathBathUK
  2. 2.College of PharmacyUniversity of KentuckyLexingtonUSA
  3. 3.L’Oréal ResearchChevilly-LarueFrance
  4. 4.L’Oréal ResearchAulnay-sous-BoisFrance

Personalised recommendations