Pharmaceutical Research

, 26:2081 | Cite as

Micellar Delivery of Bicalutamide and Embelin for Treating Prostate Cancer

  • Michael Danquah
  • Feng Li
  • Charles B. DukeIII
  • Duane D. Miller
  • Ram I. Mahato
Research Paper



To examine the effect of bicalutamide and embelin on the growth of prostate cancer cells in vitro and in vivo


Cell viability was determined by MTT assay. Micelles were fabricated with polyethylene glycol-b-polylactic acid (PEG-PLA) copolymer and characterized in terms of particle size, micellar solubilization and drug loading, followed by evaluation in nude mice bearing LNCaP xenografts.


Embelin induced caspase 3 and 9 activation in LNCaP and C4–2 cells by decreasing XIAP expression and was more potent than bicalutamide in killing prostate tumor cells irrespective of their androgen status. As analyzed by isobologram analysis the combination of bicalutamide and embelin was synergistic for C4–2 but additive and slightly antagonistic for LNCaP cells. Micellar formulation resulted in at least 60-fold increase in the aqueous solubility of bicalutamide and embelin. Tumor growth was effectively regressed upon treatment with bicalutamide, but the extent of tumor regression was significantly higher when bicalutamide was formulated in micelles. However, tumor response to bicalutamide stopped after prolonged treatment and began to grow. Sequential treatment with XIAP inhibitor embelin resulted in regression of these hormone refractory tumors.


Combined treatment with bicalutamide and embelin may be an effective strategy for treating hormone refractory prostate cancer.


androgen bicalutamide embelin micelles prostate cancer 


  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA 2008;58:71–96.PubMedGoogle Scholar
  2. 2.
    Huggins C, Hodges CV. Studies on prostatic cancer. I. The Effect of Castration, of Estrogen and of Androgen Injection on Serum Phosphatases in Metastatic Carcinoma of the Prostate. Cancer Res 1941;1:293–7.Google Scholar
  3. 3.
    Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgind SJ, et al. The endocrinology and developmental biology of the prostate. Endocr Rev 1987;8:338–62. doi: 10.1210/edrv-8-3-338.PubMedCrossRefGoogle Scholar
  4. 4.
    Isaacs JT. Role of androgens in prostate cancer. Vitam Horm 1994;49:433–502. doi: 10.1016/S0083-6729(08)61152-8.PubMedCrossRefGoogle Scholar
  5. 5.
    Arnold JT, Isaacs JT. Mechanisms involved in the progression of androgen-independent prostate cnacers: it is not only the cancer cell’s fault. Endocr Relat Cancer 2002;9:61–73. doi: 10.1677/erc.0.0090061.PubMedCrossRefGoogle Scholar
  6. 6.
    Miquel M, Soler A, Vaque A, Ojanguren I, Costa J, Planas R. Suspected cross-hepatotoxicity of flutamide and cyproterone acetate. Liver Int 2007;27:1144–7. doi: 10.1111/j.1478-3231.2007.01549.x.PubMedCrossRefGoogle Scholar
  7. 7.
    de Voogt HJ, Smith PH, Pavone-Macaluso M, de Pauw M, Suciu S. Cardiovascular side effects of diethylstilbestrol, cyproterone acetate, medroxyprogesterone acetate and estramustine phosphate used for the treatment of advanced prostatic cancer: results from European Organization for Research on Treatment of Cancer trials 30761 and 30762. J Urol 1986;135:303–7.PubMedGoogle Scholar
  8. 8.
    Blackledge G. Casodex-mechanism of action and opportunity for usage. Cancer 1993;72:3830–3. doi: 10.1002/1097-0142(19931215)72:12+<3830::AID-CNCR2820721713>3.0.CO;2-D.PubMedCrossRefGoogle Scholar
  9. 9.
    Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev 1999;13:239–52. doi: 10.1101/gad.13.3.239.PubMedCrossRefGoogle Scholar
  10. 10.
    Kasof GM, Gomes BC. Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem 2001;276:3238–46. doi: 10.1074/jbc.M003670200.PubMedCrossRefGoogle Scholar
  11. 11.
    Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 2002;3:401–10. doi: 10.1038/nrm830.PubMedCrossRefGoogle Scholar
  12. 12.
    Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, et al. A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 1998;273:7787–90. doi: 10.1074/jbc.273.14.7787.PubMedCrossRefGoogle Scholar
  13. 13.
    Fesik SW. Insights into programmed cell death through structural biology. Cell 2000;103:273–82. doi: 10.1016/S0092-8674(00)00119-7.PubMedCrossRefGoogle Scholar
  14. 14.
    Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001;104:791–800. doi: 10.1016/S0092-8674(01)00274-4.PubMedCrossRefGoogle Scholar
  15. 15.
    Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, et al. Structural basis of caspase-7 inhibition by XIAP. Cell 2001;104:769–80. doi: 10.1016/S0092-8674(01)00272-0.PubMedCrossRefGoogle Scholar
  16. 16.
    McEleny KR, Watson RW, Coffey RN, O’Neill AJ, Fitzpatrick JM. Inhibitors of apoptosis proteins in prostate cancer cell lines. Prostate 2002;51:133–40. doi: 10.1002/pros.10061.PubMedCrossRefGoogle Scholar
  17. 17.
    Krajewska M, Krajewski S, Banares S, Huang X, Turner B, Bubendorf L, et al. Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin Cancer Res 2003;9:4914–25.PubMedGoogle Scholar
  18. 18.
    Nikolovska-Coleska Z, Xu L, Hu Z, Tomita Y, Li P, Roller PP, et al. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem 2004;47:2430–40. doi: 10.1021/jm030420+.PubMedCrossRefGoogle Scholar
  19. 19.
    Chitra M, Sukumar E, Suja V, Devi CS. Antitumor, anti-inflammatory and analgesic property of embelin, a plant product. Chemotherapy 1994;40:109.PubMedGoogle Scholar
  20. 20.
    Githui EK, Makawiti DW, Midiwo JO. Changes in the concentrations of testosterone, luteinising hormone and progesterone associated with administration of embelin. Contraception 1991;44:311–7. doi: 10.1016/0010-7824(91)90020-G.PubMedCrossRefGoogle Scholar
  21. 21.
    Ahn KS, Sethi G, Aggarwal BB. Embelin, an inhibitor of X chromosome-linked inhibitor-of-apoptosis protein, blocks nuclear factor-kappaB (NF-kappaB) signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Mol Pharmacol 2007;71:209–19. doi: 10.1124/mol.106.028787.PubMedCrossRefGoogle Scholar
  22. 22.
    Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 2002;54:169–90. doi: 10.1016/S0169-409X(02)00015-7.PubMedCrossRefGoogle Scholar
  23. 23.
    Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K. Long-circulating poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge. J Control Release 2001;77:27–38. doi: 10.1016/S0168-3659(01)00451-5.PubMedCrossRefGoogle Scholar
  24. 24.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vasculature permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271–84. doi: 10.1016/S0168-3659(99)00248-5.PubMedCrossRefGoogle Scholar
  25. 25.
    Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001;74:47–61. doi: 10.1016/S0168-3659(01)00309-1.PubMedCrossRefGoogle Scholar
  26. 26.
    Mukherjee A, Kirkovsky L, Yao XT, Yates RC, Miller DD, Dalton JT. Enantioselective binding of Casodex to the androgen receptor. Xenobiotica 1996;26:117–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Steel GG, Peckham MJ. Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 1979;5:85–91.PubMedGoogle Scholar
  28. 28.
    Ananthapadmanabhan KP, Goddard ED, Turro NJ, Kuos PL. Fluorescence Probes for Critical Micelle Concentration. Langmuir 1985;1:352–5. doi: 10.1021/la00063a015.CrossRefGoogle Scholar
  29. 29.
    Ham JS. A New Electronic State in Benzene. J Chem Phys 1953;21:756–8. doi: 10.1063/1.1699014.CrossRefGoogle Scholar
  30. 30.
    Wilihelm M, Zhao CL, Wang Y, Xu R, Winnik MA. Poly(styrene-ethylene oxide) block copolymer micelle formation in water: A fluorescence probe study. Macromolecules 1991;24:1033–40. doi: 10.1021/ma00005a010.CrossRefGoogle Scholar
  31. 31.
    Blanco E, Bey EA, Dong Y, Weinberg BD, Sutton DM, Boothman DA, et al. b-Lapachone-containing PEG-PLA polymer micelles as novel nanotherapeutics against NQO1-overexpressing tumor cells. J Control Release 2007;122:365–74. doi: 10.1016/j.jconrel.2007.04.014.PubMedCrossRefGoogle Scholar
  32. 32.
    Grossmann ME, Huang H, Tindall DJ. Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 2001;93:1687–97. doi: 10.1093/jnci/93.22.1687.PubMedCrossRefGoogle Scholar
  33. 33.
    Kish JA, Bukkapatnam R, Palazzo F. The treatment challenge of hormone-refractory prostate cancer. Cancer Control 2001;8:487–95.PubMedGoogle Scholar
  34. 34.
    Knox JJ, Moore MJ. Treatment of hormone refractory prostate cancer. Semin Urol Oncol 2001;19:202–11.PubMedGoogle Scholar
  35. 35.
    Rubben H, Bex A, Otto T. Systemic treatment of hormone refractory prostate cancer. World J Urol 2001;19:99–110. doi: 10.1007/s003450000186.PubMedCrossRefGoogle Scholar
  36. 36.
    Emamaullee JA, Shapiro AM. Interventional strategies to prevent beta-cell apoptosis in islet transplantation. Diabetes 2006;55:1907–14. doi: 10.2337/db05-1254.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee EC, Zhan P, Schallhom R, Packman K, Tenniswood M. Antiandrogen-induced cell death in LNCaP human prostate cancer cells. Cell Death Differ 2003;10:761–71. doi: 10.1038/sj.cdd.4401228.PubMedCrossRefGoogle Scholar
  38. 38.
    Liao X, Tang S, Thrasher JB, Griebling TL, Li B. Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol Cancer Ther 2005;4:505–15. doi: 10.1158/1535-7163.MCT-04-0313.PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshida T, Kinoshita H, Segawa T, Nakamura E, Inoue T, Shimizu Y, et al. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res 2005;65:9611–6. doi: 10.1158/0008-5472.CAN-05-0817.PubMedCrossRefGoogle Scholar
  40. 40.
    Fakler M, Loder S, Vogler M, Schneider K, Jeremias I, Debatin KM, et al. Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood 2009;113(8):1710–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Akutsu M, Kano Y, Tsunoda S, Suzuki K, Yazawa Y, Miura Y. Schedule-dependent interaction between paclitaxel and doxorubicin in human cancer cell lines in vitro. Eur J Cancer 1995;31A:2341–6. doi: 10.1016/0959-8049(95)00448-3.PubMedCrossRefGoogle Scholar
  42. 42.
    Yang X, Zhu B, Dong T, Pan P, Shuai X, Inoue Y. Interactions between an anticancer drug and polymeric micelles based on biodegradable polyesters. Macromol Biosci 2008;8:1116–25. doi: 10.1002/mabi.200800085.PubMedCrossRefGoogle Scholar
  43. 43.
    Sirotnak FM, She Y, Lee F, Chen J, Scher HI. Studies with CWR22 xenografts in nude mice suggest that ZD1839 may have a role in the treatment of both androgen-dependent and androgen-independent human prostate cancer. Clin Cancer Res 2002;8:3870–6.PubMedGoogle Scholar
  44. 44.
    Burich RA, Holland WS, Vinall RL, Tepper C, White RW, Mack PC. Genistein combined polysaccharide enhances activity of docetaxel, bicalutamide and Src kinase inhibition in androgen-dependent and independent prostate cancer cell lines. BJU Int 2008;102:1458–66.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael Danquah
    • 1
  • Feng Li
    • 1
  • Charles B. DukeIII
    • 1
  • Duane D. Miller
    • 1
  • Ram I. Mahato
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations