Pharmaceutical Research

, Volume 26, Issue 8, pp 1807–1815 | Cite as

Elucidating the ‘Jekyll and Hyde’ Nature of PXR: The Case for Discovering Antagonists or Allosteric Antagonists

  • Arunima Biswas
  • Sridhar ManiEmail author
  • Matthew R. Redinbo
  • Matthew D. Krasowski
  • Hao Li
  • Sean Ekins
Expert Review


The pregnane X receptor belongs to the nuclear hormone receptor superfamily and is involved in the transcriptional control of numerous genes. It was originally thought that it was a xenobiotic sensor controlling detoxification pathways. Recent studies have shown an increasingly important role in inflammation and cancer, supporting its function in abrogating tissue damage. PXR orthologs and PXR-like pathways have been identified in several non-mammalian species which corroborate a conserved role for PXR in cellular detoxification. In summary, PXR has a multiplicity of roles in vivo and is being revealed as behaving like a “Jekyll and Hyde” nuclear hormone receptor. The importance of this review is to elucidate the need for discovery of antagonists of PXR to further probe its biology and therapeutic applications. Although several PXR agonists are already reported, virtually nothing is known about PXR antagonists. Here, we propose the development of PXR antagonists through chemical, genetic and molecular modeling approaches. Based on this review it will be clear that antagonists of PXR and PXR-like pathways will have widespread utility in PXR biology and therapeutics.


agonists antagonists machine learning pharmacophore pregnane X receptor 



The authors would like to gratefully acknowledge the many collaborators involved in the PXR agonist and antagonist research to date including: Dr’s. Ni Ai, Vladyslav Kholodovych and William J Welsh, (Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey), Dr Sandhya Kortagere (Drexel University), Dr. Michael Sinz (Bristol Myers Squibb), Dr Erica Reschly (University of Pittsburgh School of Medicine), Dr. Peter W. Swaan (University of Maryland), Dr. Cheng Chang (Pfizer), Dr. Akash Khandelwal, Dr. Erin Schuetz (St. Jude Childrens Research Hospital) and Dr. Kenneth Bachmann.

Supplementary material

11095_2009_9901_MOESM1_ESM.doc (32 kb)
Supplementary Table 1 (DOC 31.5 KB)
11095_2009_9901_MOESM2_ESM.doc (63 kb)
Supplementary Table 2 (DOC 63.0 KB)


  1. 1.
    Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998;92:73–82. doi: 10.1016/S0092-8674(00)80900-9.PubMedGoogle Scholar
  2. 2.
    Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998;102:1016–23. doi: 10.1172/JCI3703.PubMedGoogle Scholar
  3. 3.
    Bertilsson G, Heidrich J, Svensson K, Asman M, Jendeberg L, Sydow-Backman M, et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA 1998;95:12208–13. doi: 10.1073/pnas.95.21.12208.PubMedGoogle Scholar
  4. 4.
    Blumberg B, Sabbagh W Jr, Juguilon H, Bolado J Jr, van Meter CM, Ong ES, et al. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 1998;12:3195–205. doi: 10.1101/gad.12.20.3195.PubMedGoogle Scholar
  5. 5.
    Kliewer SA. The nuclear pregnane X receptor regulates xenobiotic detoxification. J Nutr. 2003;133:2444S–7S.PubMedGoogle Scholar
  6. 6.
    Roy-Chowdhury J, Locker J, Roy-Chowdhury N. Nuclear receptors orchestrate detoxification pathways. Dev Cell 2003;4:607–8. doi: 10.1016/S1534-5807(03)00131-X.PubMedGoogle Scholar
  7. 7.
    Ekins S, Mirny L, Schuetz EG. A ligand-based approach to understanding selectivity of nuclear hormone receptors PXR, CAR, FXR, LXRa and LXRb. Pharm Res 2002;19:1788–800. doi: 10.1023/A:1021429105173.PubMedGoogle Scholar
  8. 8.
    Stedman CA, Liddle C, Coulter SA, Sonoda J, Alvarez JG, Moore DD, et al. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc Natl Acad Sci USA 2005;102:2063–8. doi: 10.1073/pnas.0409794102.PubMedGoogle Scholar
  9. 9.
    Uppal H, Toma D, Saini SP, Ren S, Jones TJ, Xie W. Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology 2005;41:168–76. doi: 10.1002/hep.20512.PubMedGoogle Scholar
  10. 10.
    Marek CJ, Tucker SJ, Konstantinou DK, Elrick LJ, Haefner D, Sigalas C, et al. Pregnenolone-16alpha-carbonitrile inhibits rodent liver fibrogenesis via PXR (pregnane X receptor)-dependent and PXR-independent mechanisms. Biochem J 2005;387:601–8. doi: 10.1042/BJ20041598.PubMedGoogle Scholar
  11. 11.
    Tabb MM, Sun A, Zhou C, Grun F, Errandi J, Romero K, et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem 2003;278:43919–27. doi: 10.1074/jbc.M303136200.PubMedGoogle Scholar
  12. 12.
    Dussault I, Forman BM. The nuclear receptor PXR: a master regulator of “homeland” defense. Crit Rev Eukaryot Gene Expr 2002;12:53–64. doi: 10.1615/CritRevEukaryotGeneExpr.v12.i1.30.PubMedGoogle Scholar
  13. 13.
    Amador-Noguez D, Dean A, Huang W, Setchell K, Moore D, Darlington G. Alterations in xenobiotic metabolism in the long-lived Little mice. Aging Cell 2007;6:453–70. doi: 10.1111/j.1474-9726.2007.00300.x.PubMedGoogle Scholar
  14. 14.
    Shah YM, Ma X, Morimura K, Kim I, Gonzalez FJ. Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-kappaB target gene expression. Am J Physiol Gastrointest Liver Physiol 2007;292:G1114–22. doi: 10.1152/ajpgi.00528.2006.PubMedGoogle Scholar
  15. 15.
    Langmann T, Moehle C, Mauerer R, Scharl M, Liebisch G, Zahn A, et al. Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology 2004;127:26–40. doi: 10.1053/j.gastro.2004.04.019.PubMedGoogle Scholar
  16. 16.
    Zhou C, Tabb MM, Nelson EL, Grun F, Verma S, Sadatrafiei A, et al. Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J Clin Invest 2006;116:2280–9. doi: 10.1172/JCI26283.PubMedGoogle Scholar
  17. 17.
    Bauer B, Hartz AM, Fricker G, Miller DS. Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood–brain barrier. Mol Pharmacol 2004;66:413–9.PubMedGoogle Scholar
  18. 18.
    Bauer B, Yang X, Hartz AM, Olson ER, Zhao R, Kalvass JC, et al. In vivo activation of human pregnane X receptor tightens the blood–brain barrier to methadone through P-glycoprotein up-regulation. Mol Pharmacol 2006;70:1212–9. doi: 10.1124/mol.106.023796.PubMedGoogle Scholar
  19. 19.
    Yu XQ, Xue CC, Wang G, Zhou SF. Multidrug resistance associated proteins as determining factors of pharmacokinetics and pharmacodynamics of drugs. Curr Drug Metab 2007;8:787–802. doi: 10.2174/138920007782798171.PubMedGoogle Scholar
  20. 20.
    Bauer B, Hartz AM, Lucking JR, Yang X, Pollack GM, Miller DS. Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTpi, at the blood–brain barrier. J Cereb Blood Flow Metab 2008;28:1222–34. doi: 10.1038/jcbfm.2008.16.PubMedGoogle Scholar
  21. 21.
    Narang VS, Fraga C, Kumar N, Shen J, Throm S, Stewart CF, et al. Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood–brain barrier. Am J Physiol Cell Physiol 2008;295:C440–50. doi: 10.1152/ajpcell.00491.2007.PubMedGoogle Scholar
  22. 22.
    Ott M, Fricker G, Bauer B. PXR regulates P-glycoprotein at the blood–brain barrier: functional similarities between pig and human PXR. J Pharmacol Exp Ther 2009;329:141–9.PubMedGoogle Scholar
  23. 23.
    Lombardo L, Pellitteri R, Balazy M, Cardile V. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr Neurovasc Res 2008;5:82–92. doi: 10.2174/156720208784310196.PubMedGoogle Scholar
  24. 24.
    Oscarson M, Zanger UM, Rifki OF, Klein K, Eichelbaum M, Meyer UA. Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin Pharmacol Ther 2006;80:440–56. doi: 10.1016/j.clpt.2006.08.013.PubMedGoogle Scholar
  25. 25.
    Masson D, Lagrost L, Athias A, Gambert P, Brimer-Cline C, Lan L, et al. Expression of the pregnane X receptor in mice antagonizes the cholic acid-mediated changes in plasma lipoprotein profile. Arterioscler Thromb Vasc Biol 2005;25:2164–9. doi: 10.1161/01.ATV.0000183674.88817.fb.PubMedGoogle Scholar
  26. 26.
    Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 2005;433:397–412. doi: 10.1016/ Scholar
  27. 27.
    Handschin C, Meyer UA. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Arch Biochem Biophys 2005;433:387–96. doi: 10.1016/ Scholar
  28. 28.
    Moreau A, Vilarem MJ, Maurel P, Pascussi JM. Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response. Mol Pharm 2008;5:35–41. doi: 10.1021/mp700103m.PubMedGoogle Scholar
  29. 29.
    Bachmann K, Patel H, Batayneh Z, Slama J, White D, Posey J, et al. PXR and the regulation of apoA1 and HDL-cholesterol in rodents. Pharmacol Res 2004;50:237–46. doi: 10.1016/j.phrs.2004.03.005.PubMedGoogle Scholar
  30. 30.
    de Haan W, de Vries-van der Weij J, Mol IM, Hoekstra M, Romijn AJ, Jukema JW, et al. PXR agonism decreases plasma HDL levels in ApoE3-Leiden.CETP mice. Biochim Biophys Acta 2009;1791:191–7.PubMedGoogle Scholar
  31. 31.
    Hoekstra M, Lammers B, Out R, Li Z, Van Eck M, Van Berkel TJ. Activation of the nuclear receptor PXR decreases plasma LDL-cholesterol levels and induces hepatic steatosis in LDL receptor knockout mice. Mol Pharm 2009;6:182–9. doi: 10.1021/mp800131d.PubMedGoogle Scholar
  32. 32.
    Fisher CD, Jackson JP, Lickteig AJ, Augustine LM, Cherrington NJ. Drug metabolizing enzyme induction pathways in experimental non-alcoholic steatohepatitis. Arch Toxicol 2008;82:959–64. doi: 10.1007/s00204-008-0312-z.PubMedGoogle Scholar
  33. 33.
    Khogali AM, Chazan BI, Metcalf VJ, Ramsay JH. Hyperlipidaemia as a complication of rifampicin treatment. Tubercle 1974;55:231–3. doi: 10.1016/0041-3879(74)90050-6.PubMedGoogle Scholar
  34. 34.
    Neeli H, Gadi R, Rader DJ. Managing diabetic dyslipidemia: beyond statin therapy. Curr Diab Rep 2009;9:11–7. doi: 10.1007/s11892-009-0004-y.PubMedGoogle Scholar
  35. 35.
    Yu S, Kong AN. Targeting carcinogen metabolism by dietary cancer preventive compounds. Curr Cancer Drug Targets 2007;7:416–24. doi: 10.2174/156800907780058817.PubMedGoogle Scholar
  36. 36.
    Gupta D, Venkatesh M, Wang H, Kim S, Sinz M, Goldberg GL, et al. Expanding the roles for pregnane X receptor in cancer: proliferation and drug resistance in ovarian cancer. Clin Cancer Res 2008;14:5332–40. doi: 10.1158/1078-0432.CCR-08-1033.PubMedGoogle Scholar
  37. 37.
    Thatcher NJ, Caldwell J. Origins of hepatomegaly produced by dexamethasone (DEX), pregnenolone 16 alpha-carbonitrile (PCN) and phenobarbitone (PB) in female Sprague–Dawley rats. Biochem Soc Trans. 1994;22:132S.PubMedGoogle Scholar
  38. 38.
    Solymoss B, Zsigmond G. Effect of microsomal enzyme inducers on the liver changes produced by common bile-duct ligature. Proc Soc Exp Biol Med 1974;147:430–3.PubMedGoogle Scholar
  39. 39.
    Staudinger J, Liu Y, Madan A, Habeebu S, Klaassen CD. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab Dispos 2001;29:1467–72.PubMedGoogle Scholar
  40. 40.
    Xie W, Barwick JL, Downes M, Blumberg B, Simon CM, Nelson MC, et al. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature 2000;406:435–9. doi: 10.1038/35019116.PubMedGoogle Scholar
  41. 41.
    Kolaja KL, Engelken DT, Klaassen CD. Inhibition of gap-junctional-intercellular communication in intact rat liver by nongenotoxic hepatocarcinogens. Toxicology 2000;146:15–22. doi: 10.1016/S0300-483X(00)00162-1.PubMedGoogle Scholar
  42. 42.
    Chen ZY, White CC, He CY, Liu YF, Eaton DL. Zonal differences in DNA synthesis activity and cytochrome P450 gene expression in livers of male F344 rats treated with five nongenotoxic carcinogens. J Environ Pathol Toxicol Oncol 1995;14:83–99.PubMedGoogle Scholar
  43. 43.
    Paolini M, Barone E, Corsi C, Paganin C, Revoltella RP. Expression and inducibility of drug-metabolizing enzymes in novel murine liver epithelial cell lines and their ability to activate procarcinogens. Cancer Res 1991;51:301–9.PubMedGoogle Scholar
  44. 44.
    Yusof YA, Edwards AM. Stimulation of DNA synthesis in primary rat hepatocyte cultures by liver tumor promoters: interactions with other growth factors. Carcinogenesis 1990;11:761–70. doi: 10.1093/carcin/11.5.761.PubMedGoogle Scholar
  45. 45.
    Nesnow S, Leavitt S, Garland H, Vaughan TO, Hyatt B, Montgomery L, et al. Identification of cocarcinogens and their potential mechanisms of action using C3H10T 1/2 CL8 mouse embryo fibroblasts. Cancer Res 1981;41:3071–6.PubMedGoogle Scholar
  46. 46.
    Schulte-Hermann R, Ohde G, Schuppler J, Timmermann-Trosiener I. Enhanced proliferation of putative preneoplastic cells in rat liver following treatment with the tumor promoters phenobarbital, hexachlorocyclohexane, steroid compounds, and nafenopin. Cancer Res 1981;41:2556–62.PubMedGoogle Scholar
  47. 47.
    Garg BD, Kourounakis P, Tuchweber B, Szabo S, Kovacs K. Studies on drug metabolism and liver ultrastructure after conjoint treatment with pregnenolone-16alpha-carbonitrile and dl-ethionine. Arch Int Pharmacodyn Ther 1977;227:283–93.PubMedGoogle Scholar
  48. 48.
    Garg BD, Kovacs K, Tuchweber B, Khandekar JD. Effect of pregnenolone-16alpha-carbonitrile, a microsomal enzyme inducer, on the regenerating rat liver. Acta Anat (Basel) 1975;91:161–74. doi: 10.1159/000144380.Google Scholar
  49. 49.
    Cathala L, Garg BD. Hepatocytic ultrastructure in splenectomized rats treated with pregnenolone-16alpha-carbonitrile, a microsomal enzyme inducer. Acta Anat (Basel) 1975;93:51–9. doi: 10.1159/000144496.Google Scholar
  50. 50.
    Wang T, Ma X, Krausz KW, Idle JR, Gonzalez FJ. Role of pregnane X receptor in control of all-trans retinoic acid (ATRA) metabolism and its potential contribution to ATRA resistance. J Pharmacol Exp Ther 2008;324:674–84. doi: 10.1124/jpet.107.131045.PubMedGoogle Scholar
  51. 51.
    Naspinski C, Gu X, Zhou GD, Mertens-Talcott SU, Donnelly KC, Tian Y. Pregnane X receptor protects HepG2 cells from BaP-induced DNA damage. Toxicol Sci 2008;104:67–73. doi: 10.1093/toxsci/kfn058.PubMedGoogle Scholar
  52. 52.
    Zucchini N, de Sousa G, Bailly-Maitre B, Gugenheim J, Bars R, Lemaire G, et al. Regulation of Bcl-2 and Bcl-xL anti-apoptotic protein expression by nuclear receptor PXR in primary cultures of human and rat hepatocytes. Biochim Biophys Acta 2005;1745:48–58. doi: 10.1016/j.bbamcr.2005.02.005.PubMedGoogle Scholar
  53. 53.
    Dai G, He L, Bu P, Wan YJ. Pregnane X receptor is essential for normal progression of liver regeneration. Hepatology 2008;47:1277–87. doi: 10.1002/hep.22129.PubMedGoogle Scholar
  54. 54.
    Axon A, Cowie DE, Mann DA, Wright MC. A mechanism for the anti-fibrogenic effects of the pregnane X receptor (PXR) in the liver: inhibition of NF-kappaB? Toxicology 2008;246:40–4. doi: 10.1016/j.tox.2007.12.008.PubMedGoogle Scholar
  55. 55.
    Wright MC. The impact of pregnane X receptor activation on liver fibrosis. Biochem Soc Trans 2006;34:1119–23. doi: 10.1042/BST0341119.PubMedGoogle Scholar
  56. 56.
    Teng S, Piquette-Miller M. Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis. Br J Pharmacol 2007;151:367–76. doi: 10.1038/sj.bjp.0707235.PubMedGoogle Scholar
  57. 57.
    Sonoda J, Chong LW, Downes M, Barish GD, Coulter S, Liddle C, et al. Pregnane X receptor prevents hepatorenal toxicity from cholesterol metabolites. Proc Natl Acad Sci USA 2005;102:2198–203. doi: 10.1073/pnas.0409481102.PubMedGoogle Scholar
  58. 58.
    Wolf KK, Wood SG, Hunt JA, Walton-Strong BW, Yasuda K, Lan L, et al. Role of the nuclear receptor pregnane X receptor in acetaminophen hepatotoxicity. Drug Metab Dispos 2005;33:1827–36.PubMedGoogle Scholar
  59. 59.
    Zhang J, Huang W, Qatanani M, Evans RM, Moore DD. The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem 2004;279:49517–22. doi: 10.1074/jbc.M409041200.PubMedGoogle Scholar
  60. 60.
    Guzelian J, Barwick JL, Hunter L, Phang TL, Quattrochi LC, Guzelian PS. Identification of genes controlled by the pregnane X receptor by microarray analysis of mRNAs from pregnenolone 16alpha-carbonitrile-treated rats. Toxicol Sci 2006;94:379–87. doi: 10.1093/toxsci/kfl116.PubMedGoogle Scholar
  61. 61.
    Rosenfeld JM, Vargas R Jr, Xie W, Evans RM. Genetic profiling defines the xenobiotic gene network controlled by the nuclear receptor pregnane X receptor. Mol Endocrinol 2003;17:1268–82. doi: 10.1210/me.2002-0421.PubMedGoogle Scholar
  62. 62.
    Igarashi M, Yogiashi Y, Mihara M, Takada I, Kitagawa H, Kato S. Vitamin K induces osteoblast differentiation through pregnane X receptor-mediated transcriptional control of the Msx2 gene. Mol Cell Biol 2007;27:7947–54. doi: 10.1128/MCB.00813-07.PubMedGoogle Scholar
  63. 63.
    Langmade SJ, Gale SE, Frolov A, Mohri I, Suzuki K, Mellon SH, et al. Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann-Pick C disease. Proc Natl Acad Sci USA 2006;103:13807–12. doi: 10.1073/pnas.0606218103.PubMedGoogle Scholar
  64. 64.
    Sparfel L, Payen L, Gilot D, Sidaway J, Morel F, Guillouzo A, et al. Pregnane X receptor-dependent and -independent effects of 2-acetylaminofluorene on cytochrome P450 3A23 expression and liver cell proliferation. Biochem Biophys Res Commun 2003;300:278–84. doi: 10.1016/S0006-291X(02)02847-4.PubMedGoogle Scholar
  65. 65.
    Kiyosawa N, Kwekel JC, Burgoon LD, Williams KJ, Tashiro C, Chittim B, et al. o,p′-DDT elicits PXR/CAR-, not ER-, mediated responses in the immature ovariectomized rat liver. Toxicol Sci 2008;101:350–63. doi: 10.1093/toxsci/kfm275.PubMedGoogle Scholar
  66. 66.
    Meyer zu Schwabedissen HE, Tirona RG, Yip CS, Ho RH, Kim RB. Interplay between the nuclear receptor pregnane X receptor and the uptake transporter organic anion transporter polypeptide 1A2 selectively enhances estrogen effects in breast cancer. Cancer Res 2008;68:9338–47. doi: 10.1158/0008-5472.CAN-08-0265.PubMedGoogle Scholar
  67. 67.
    Zhou J, Liu M, Zhai Y, Xie W. The antiapoptotic role of pregnane X receptor in human colon cancer cells. Mol Endocrinol 2008;22:868–80. doi: 10.1210/me.2007-0197.PubMedGoogle Scholar
  68. 68.
    Gong H, Singh SV, Singh SP, Mu Y, Lee JH, Saini SP, et al. Orphan nuclear receptor pregnane X receptor sensitizes oxidative stress responses in transgenic mice and cancerous cells. Mol Endocrinol 2006;20:279–90. doi: 10.1210/me.2005-0205.PubMedGoogle Scholar
  69. 69.
    Chen Y, Tang Y, Wang MT, Zeng S, Nie D. Human pregnane X receptor and resistance to chemotherapy in prostate cancer. Cancer Res 2007;67:10361–7. doi: 10.1158/0008-5472.CAN-06-4758.PubMedGoogle Scholar
  70. 70.
    Masuyama H, Hiramatsu Y, Kodama J, Kudo T. Expression and potential roles of pregnane X receptor in endometrial cancer. J Clin Endocrinol Metab 2003;88:4446–54. doi: 10.1210/jc.2003-030203.PubMedGoogle Scholar
  71. 71.
    Masuyama H, Nakatsukasa H, Takamoto N, Hiramatsu Y. Down-regulation of pregnane X receptor contributes to cell growth inhibition and apoptosis by anticancer agents in endometrial cancer cells. Mol Pharmacol 2007;72:1045–53. doi: 10.1124/mol.107.037937.PubMedGoogle Scholar
  72. 72.
    Mensah-Osman EJ, Thomas DG, Tabb MM, Larios JM, Hughes DP, Giordano TJ, et al. Expression levels and activation of a PXR variant are directly related to drug resistance in osteosarcoma cell lines. Cancer 2007;109:957–65. doi: 10.1002/cncr.22479.PubMedGoogle Scholar
  73. 73.
    Miki Y, Suzuki T, Kitada K, Yabuki N, Shibuya R, Moriya T, et al. Expression of the steroid and xenobiotic receptor and its possible target gene, organic anion transporting polypeptide-A, in human breast carcinoma. Cancer Res 2006;66:535–42. doi: 10.1158/0008-5472.CAN-05-1070.PubMedGoogle Scholar
  74. 74.
    Chen Y, Nie D. Pregnane x receptor and its potential role in drug resistance in cancer treatment. Recent Patents Anticancer Drug Discov 2009;4:19–27.Google Scholar
  75. 75.
    Verma S, Tabb MM, Blumberg B. Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer 2009;9:3. doi: 10.1186/1471-2407-9-3.PubMedGoogle Scholar
  76. 76.
    Rokutanda N, Iwasaki T, Odawara H, Nagaoka R, Miyazaki W, Takeshita A, Koibuchi Y, Horiguchi J, Shimokawa N, Iino Y, Morishita Y, Koibuchi N. Augmentation of estrogen receptor-mediated transcription by steroid and xenobiotic receptor. Endocrine. 2009; in press.
  77. 77.
    Mnif W, Pascussi JM, Pillon A, Escande A, Bartegi A, Nicolas JC, et al. Estrogens and antiestrogens activate hPXR. Toxicol Lett 2007;170:19–29. doi: 10.1016/j.toxlet.2006.11.016.PubMedGoogle Scholar
  78. 78.
    Min G. Different modulation of ER-mediated transactivation by xenobiotic nuclear receptors depending on the estrogen response elements and estrogen target cell types. Ann N Y Acad Sci 2006;1091:244–57. doi: 10.1196/annals.1378.071.PubMedGoogle Scholar
  79. 79.
    Dotzlaw H, Leygue E, Watson P, Murphy LC. The human orphan receptor PXR messenger RNA is expressed in both normal and neoplastic breast tissue. Clin Cancer Res 1999;5:2103–7.PubMedGoogle Scholar
  80. 80.
    Acevedo R, Parnell PG, Villanueva H, Chapman LM, Gimenez T, Gray SL, et al. The contribution of hepatic steroid metabolism to serum estradiol and estriol concentrations in nonylphenol treated MMTVneu mice and its potential effects on breast cancer incidence and latency. J Appl Toxicol 2005;25:339–53. doi: 10.1002/jat.1078.PubMedGoogle Scholar
  81. 81.
    Ekins S, Erickson JA. A pharmacophore for human pregnane X receptor ligands. Drug Metab Dispos 2002;30:96–9. doi: 10.1124/dmd.30.1.96.PubMedGoogle Scholar
  82. 82.
    Willson TM, Kliewer SA. PXR, CAR and drug metabolism. Nat Rev Drug Discov 2002;1:259–66. doi: 10.1038/nrd753.PubMedGoogle Scholar
  83. 83.
    Schuetz E, Strom S. Promiscuous regulator of xenobiotic removal. Nat Med 2001;7:536–7. doi: 10.1038/87856.PubMedGoogle Scholar
  84. 84.
    Krasowski MD, Yasuda K, Hagey LR, Schuetz EG. Evolution of the pregnane x receptor: adaptation to cross-species differences in biliary bile salts. Mol Endocrinol 2005;19:1720–39. doi: 10.1210/me.2004-0427.PubMedGoogle Scholar
  85. 85.
    Mani S, Huang H, Sundarababu S, Liu W, Kalpana G, Smith AB, et al. Activation of the steroid and xenobiotic receptor (human pregnane X receptor) by nontaxane microtubule-stabilizing agents. Clin Cancer Res 2005;11:6359–69. doi: 10.1158/1078-0432.CCR-05-0252.PubMedGoogle Scholar
  86. 86.
    Ekins S, Chang C, Mani S, Krasowski MD, Reschly EJ, Iyer M, et al. Human pregnane X receptor antagonists and agonists define molecular requirements for different binding sites. Mol Pharmacol 2007;72:592–603. doi: 10.1124/mol.107.038398.PubMedGoogle Scholar
  87. 87.
    Teotico DG, Bischof JJ, Peng L, Kliewer SA, Redinbo MR. Structural basis of human pregnane X receptor activation by the hops constituent colupulone. Mol Pharmacol 2008;74:1512–20. doi: 10.1124/mol.108.050732.PubMedGoogle Scholar
  88. 88.
    Watkins RE, Davis-Searles PR, Lambert MH, Redinbo MR. Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J Mol Biol 2003;331:815–28. doi: 10.1016/S0022-2836(03)00795-2.PubMedGoogle Scholar
  89. 89.
    Watkins RE, Maglich JM, Moore LB, Wisely GB, Noble SM, Davis-Searles PR, et al. 2.1 A crystal structure of human PXR in complex with the St. John's wort compound hyperforin. Biochemistry 2003;42:1430–8. doi: 10.1021/bi0268753.PubMedGoogle Scholar
  90. 90.
    Watkins RE, Noble SM, Redinbo MR. Structural insights into the promiscuity and function of the human pregnane X receptor. Curr Opin Drug Discov Dev 2002;5:150–8.Google Scholar
  91. 91.
    Watkins RE, Wisely GB, Moore LB, Collins JL, Lambert MH, Williams SP, et al. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 2001;292:2329–33. doi: 10.1126/science.1060762.PubMedGoogle Scholar
  92. 92.
    Xue Y, Chao E, Zuercher WJ, Willson TM, Collins JL, Redinbo MR. Crystal structure of the PXR-T1317 complex provides a scaffold to examine the potential for receptor antagonism. Bioorg Med Chem 2007;15:2156–66. doi: 10.1016/j.bmc.2006.12.026.PubMedGoogle Scholar
  93. 93.
    Hu Z, Yang X, Ho PC, Chan E, Chan SY, Xu C, et al. St. John's Wort modulates the toxicities and pharmacokinetics of CPT-11 (irinotecan) in rats. Pharm Res 2005;22:902–14. doi: 10.1007/s11095-005-4585-0.PubMedGoogle Scholar
  94. 94.
    Mathijssen RH, Verweij J, de Bruijn P, Loos WJ, Sparreboom A. Effects of St. John's wort on irinotecan metabolism. J Natl Cancer Inst 2002;94:1247–9.PubMedGoogle Scholar
  95. 95.
    Frye RF, Fitzgerald SM, Lagattuta TF, Hruska MW, Egorin MJ. Effect of St John's wort on imatinib mesylate pharmacokinetics. Clin Pharmacol Ther 2004;76:323–9. doi: 10.1016/j.clpt.2004.06.007.PubMedGoogle Scholar
  96. 96.
    Smith P, Bullock JM, Booker BM, Haas CE, Berenson CS, Jusko WJ. The influence of St. John's wort on the pharmacokinetics and protein binding of imatinib mesylate. Pharmacotherapy 2004;24:1508–14. doi: 10.1592/phco.24.16.1508.50958.PubMedGoogle Scholar
  97. 97.
    Komoroski BJ, Parise RA, Egorin MJ, Strom SC, Venkataramanan R. Effect of the St. John's wort constituent hyperforin on docetaxel metabolism by human hepatocyte cultures. Clin Cancer Res 2005;11:6972–9. doi: 10.1158/1078-0432.CCR-04-2488.PubMedGoogle Scholar
  98. 98.
    Hu ZP, Yang XX, Chen X, Cao J, Chan E, Duan W, et al. A mechanistic study on altered pharmacokinetics of irinotecan by St John's wort. Curr Drug Metab 2007;8:157–71. doi: 10.2174/138920007779815995.PubMedGoogle Scholar
  99. 99.
    Guo GL, Moffit JS, Nicol CJ, Ward JM, Aleksunes LA, Slitt AL, et al. Enhanced acetaminophen toxicity by activation of the pregnane X receptor. Toxicol Sci 2004;82:374–80. doi: 10.1093/toxsci/kfh286.PubMedGoogle Scholar
  100. 100.
    Pascussi JM, Robert A, Nguyen M, Walrant-Debray O, Garabedian M, Martin P, et al. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J Clin Invest 2005;115:177–86.PubMedGoogle Scholar
  101. 101.
    Lemaire G, Benod C, Nahoum V, Pillon A, Boussioux AM, Guichou JF, et al. Discovery of a highly active ligand of human Pregnane X receptor: a case study from pharmacophore modeling and virtual screening to “in vivo” biological activity. Mol Pharmacol 2007;73 3:572–81.Google Scholar
  102. 102.
    Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 2001;7:584–90. doi: 10.1038/87912.PubMedGoogle Scholar
  103. 103.
    Tabb MM, Kholodovych V, Grun F, Zhou C, Welsh WJ, Blumberg B. Highly chlorinated PCBs inhibit the human xenobiotic response mediated by the steroid and xenobiotic receptor (SXR). Environ Health Perspect 2004;112:163–9.PubMedGoogle Scholar
  104. 104.
    Huang H, Wang H, Sinz M, Zoeckler M, Staudinger J, Redinbo MR, et al. Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. Oncogene 2007;26:258–68. doi: 10.1038/sj.onc.1209788.PubMedGoogle Scholar
  105. 105.
    Wang H, Huang H, Li H, Teotico DG, Sinz M, Baker SD, et al. Activated PXR is a target for ketoconazole and its analogs. Clin Cancer Res 2007;13:2488–95. doi: 10.1158/1078-0432.CCR-06-1592.PubMedGoogle Scholar
  106. 106.
    Zhou C, Poulton EJ, Grun F, Bammler TK, Blumberg B, Thummel KE, et al. The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol Pharmacol 2007;71:220–9. doi: 10.1124/mol.106.029264.PubMedGoogle Scholar
  107. 107.
    Wang H, Li H, Moore LB, Johnson MD, Maglich JM, Goodwin B, et al. The phytoestrogen coumestrol is a naturally occurring antagonist of the human pregnane X receptor. Mol Endocrinol 2008;22:838–57. doi: 10.1210/me.2007-0218.PubMedGoogle Scholar
  108. 108.
    Healan-Greenberg C, Waring JF, Kempf DJ, Blomme EA, Tirona RG, Kim RB. A human immunodeficiency virus protease inhibitor is a novel functional inhibitor of human pregnane X receptor. Drug Metab Dispos 2007;36:500–7. doi: 10.1124/dmd.107.019547.PubMedGoogle Scholar
  109. 109.
    Ekins S, Reschly EJ, Hagey LR, Krasowski MD. Evolution of pharmacologic specificity in the pregnane X receptor. BMC Evol Biol 2008;8:103. doi: 10.1186/1471-2148-8-103.PubMedGoogle Scholar
  110. 110.
    Bresolin T, de Freitas Rebelo M, Celso Dias Bainy A. Expression of PXR, CYP3A and MDR1 genes in liver of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2005;140:403–7. doi: 10.1016/j.cca.2005.04.003.PubMedGoogle Scholar
  111. 111.
    Moore LB, Maglich JM, McKee DD, Wisely B, Willson TM, Kliewer SA, et al. Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol Endocrinol 2002;16:977–86. doi: 10.1210/me.16.5.977.PubMedGoogle Scholar
  112. 112.
    Reschly EJ, Ai N, Ekins S, Welsh WJ, Hagey LR, Hofmann AF, et al. Evolution of the bile salt nuclear receptor FXR in vertebrates. J Lipid Res 2008;49:1577–87. doi: 10.1194/jlr.M800138-JLR200.PubMedGoogle Scholar
  113. 113.
    King-Jones K, Horner MA, Lam G, Thummel CS. The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab 2006;4:37–48. doi: 10.1016/j.cmet.2006.06.006.PubMedGoogle Scholar
  114. 114.
    Baker KD, Beckstead RB, Mangelsdorf DJ, Thummel CS. Functional interactions between the Moses corepressor and DHR78 nuclear receptor regulate growth in Drosophila. Genes Dev 2007;21:450–64. doi: 10.1101/gad.1519007.PubMedGoogle Scholar
  115. 115.
    Reschly EJ, Bainy AC, Mattos JJ, Hagey LR, Bahary N, Mada SR, et al. Functional evolution of the vitamin D and pregnane X receptors. BMC Evol Biol 2007;7:222. doi: 10.1186/1471-2148-7-222.PubMedGoogle Scholar
  116. 116.
    Thakur JK, Arthanari H, Yang F, Pan SJ, Fan X, Breger J, et al. A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 2008;452:604–9. doi: 10.1038/nature06836.PubMedGoogle Scholar
  117. 117.
    Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 2000;14:1512–27.PubMedGoogle Scholar
  118. 118.
    Lindblom TH, Pierce GJ, Sluder AE. A C. elegans orphan nuclear receptor contributes to xenobiotic resistance. Curr Biol 2001;11:864–8. doi: 10.1016/S0960-9822(01)00236-6.PubMedGoogle Scholar
  119. 119.
    Fisk GJ, Thummel CS. The DHR78 nuclear receptor is required for ecdysteroid signaling during the onset of Drosophila metamorphosis. Cell 1998;93:543–55. doi: 10.1016/S0092-8674(00)81184-8.PubMedGoogle Scholar
  120. 120.
    Ung CY, Li H, Yap CW, Chen YZ. In silico prediction of pregnane X receptor activators by machine learning approach. Mol Pharmacol 2007;71:158–68. doi: 10.1124/mol.106.027623.PubMedGoogle Scholar
  121. 121.
    Jacobs MN. In silico tools to aid risk assessment of endocrine disrupting chemicals. Toxicology 2004;205:43–53. doi: 10.1016/j.tox.2004.06.036.PubMedGoogle Scholar
  122. 122.
    Yasuda K, Ranade A, Venkataramanan R, Strom S, Chupka J, Ekins S, et al. A comprehensive in vitro and in silico analysis of antibiotics that activate pregnane X receptor and induce CYP3A4 in liver and intestine. Drug Metab Dispos 2008;36:1689–97. doi: 10.1124/dmd.108.020701.PubMedGoogle Scholar
  123. 123.
    Khandelwal A, Krasowski MD, Reschly EJ, Sinz MW, Swaan PW, Ekins S. Machine learning methods and docking for predicting human pregnane X receptor activation. Chem Res Toxicol 2008;21:1457–67. doi: 10.1021/tx800102e.PubMedGoogle Scholar
  124. 124.
    Kortagere S, Chekmarev D, Welsh WJ, Ekins S. Hybrid scoring and classification approaches to predict human pregnane x receptor activators. Pharm Res 2009;26:1001–11. doi: 10.1007/s11095-008-9809-7.PubMedGoogle Scholar
  125. 125.
    Lin YS, Yasuda K, Assem M, Cline C, Barber J, Li C-W, Kholodovych V, Ai N, Chen JD, Welsh WJ, Ekins S, Schuetz EG. The major human PXR splice variant, PXR.2, exhibits significantly diminished ligand-activated transcriptional regulation. Drug Metab Dispos. 2009; in press.
  126. 126.
    Ekins S, Kirillov E, Rakhmatulin EA, Nikolskaya T. A novel method for visualizing nuclear hormone receptor networks relevant to drug metabolism. Drug Metab Dispos 2005;33:474–81. doi: 10.1124/dmd.104.002717.PubMedGoogle Scholar
  127. 127.
    Anand PK, Kaul D. Downregulation of TACO gene transcription restricts mycobacterial entry/survival within human macrophages. FEMS Microbiol Lett 2005;250:137–44. doi: 10.1016/j.femsle.2005.06.056.PubMedGoogle Scholar
  128. 128.
    Anand PK, Kaul D, Sharma M. Synergistic action of vitamin D and retinoic acid restricts invasion of macrophages by pathogenic mycobacteria. J Microbiol Immunol Infect 2008;41:17–25.PubMedGoogle Scholar
  129. 129.
    Vidyarani M, Selvaraj P, Raghavan S, Narayanan PR. Regulatory role of 1, 25-dihydroxyvitamin D(3) and vitamin D receptor gene variants on intracellular granzyme A expression in pulmonary tuberculosis. Exp Mol Pathol 2009;86:69–73. doi: 10.1016/j.yexmp.2008.10.002.PubMedGoogle Scholar
  130. 130.
    Chrencik JE, Orans J, Moore LB, Xue Y, Peng L, Collins JL, et al. Structural disorder in the complex of human pregnane X receptor and the macrolide antibiotic rifampicin. Mol Endocrinol 2005;19:1125–34. doi: 10.1210/me.2004-0346.PubMedGoogle Scholar
  131. 131.
    Balganesh TS, Alzari PM, Cole ST. Rising standards for tuberculosis drug development. Trends Pharmacol Sci 2008;29:576–81. doi: 10.1016/ Scholar
  132. 132.
    Ballel L, Field RA, Duncan K, Young RJ. New small-molecule synthetic antimycobacterials. Antimicrob Agents Chemother 2005;49:2153–63. doi: 10.1128/AAC.49.6.2153-2163.2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Arunima Biswas
    • 1
  • Sridhar Mani
    • 1
    Email author
  • Matthew R. Redinbo
    • 2
  • Matthew D. Krasowski
    • 3
  • Hao Li
    • 1
  • Sean Ekins
    • 4
    • 5
    • 6
    • 7
  1. 1.Albert Einstein Cancer CenterAlbert Einstein College of MedicineBronxUSA
  2. 2.Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of PathologyUniversity of PittsburghPittsburghUSA
  4. 4.Collaborations in ChemistryJenkintownUSA
  5. 5.Collaborative Drug Discovery Inc.,BurlingameUSA
  6. 6.Department of Pharmaceutical SciencesUniversity of MarylandCollege ParkUSA
  7. 7.Department of PharmacologyUniversity of Medicine & Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical SchoolPiscatawayUSA

Personalised recommendations