Advertisement

Pharmaceutical Research

, Volume 26, Issue 7, pp 1729–1738 | Cite as

Cellular Responses to Cancer Chemopreventive Agent D,L-Sulforaphane in Human Prostate Cancer Cells Are Initiated by Mitochondrial Reactive Oxygen Species

  • Dong Xiao
  • Anna A. Powolny
  • Jedrzej Antosiewicz
  • Eun-Ryeong Hahm
  • Ajay Bommareddy
  • Yan Zeng
  • Dhimant Desai
  • Shantu Amin
  • Anna Herman-Antosiewicz
  • Shivendra V. SinghEmail author
Research Paper

Abstract

Purpose

Present study was undertaken to elucidate the mechanism of cellular responses to D,L-sulforaphane (SFN), a highly promising cancer chemopreventive agent.

Methods

Mitochondrial DNA deficient Rho-0 variants of LNCaP and PC-3 cells were generated by culture in the presence of ethidium bromide. Apoptosis was assessed by analysis of cytoplasmic histone-associated DNA fragmentation and activation of caspase-3. Immunoblotting was performed to determine the expression of apoptosis- and cell cycle-regulating proteins. Generation of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and cell cycle distribution were measured by flow cytometry.

Results

The Rho-0 variants of LNCaP and PC-3 cells were significantly more resistant to SFN-induced ROS generation, apoptotic DNA fragmentation, disruption of MMP, cytosolic release of cytochrome c, and G2/M phase cell cycle arrest compared with corresponding wild-type cells. SFN-induced autophagy, which serves to protect against apoptotic cell death in PC-3 and LNCaP cells, was also partially but markedly suppressed in Rho-0 variants compared with wild-type cells. SFN statistically significantly inhibited activities of mitochondrial respiratory chain enzymes in LNCaP and PC-3 cells.

Conclusion

These results indicate, for the first time, that mitochondria-derived ROS serve to initiate diverse cellular responses to SFN exposure in human prostate cancer cells.

KEY WORDS

chemoprevention prostate cancer sulforaphane 

Supplementary material

11095_2009_9883_Fig1_ESM.gif (47 kb)
Fig. S1

The SFN-induced recruitment of LC3 to autophagosomes is inhibited by pretreatment with NAC. A, GFP fluorescence in PC-3 cells stably producing GFP-LC3 protein, treated with DMSO or 40 μmol/L SFN for 6 h in the absence (upper pictures) or presence (lower pictures) of 4 mmol/L NAC (2-h pretreatment). In DMSO-treated cells GFP-LC3 is uniformly distributed. SFN treatment induces redistribution of GFP-LC3 to autophagosomes, which is suppressed by NAC. B, The percentage of cells with GFP-LC3 foci treated with DMSO or 40 μmol/L SFN for 6 h in the absence or presence of 4 mmol/L NAC (2-h pretreatment). A total of 200 cells were scored in two separate slides of a given sample. Representative data from a single experiment, which was repeated with similar results, are shown and mean ± SE. Significantly different (P < 0.05) compared with aDMSO-treated control and bSFN only-treated cells by one-way ANOVA followed by Tukey’s test (GIF 46.9 KB).

11095_2009_9883_Fig1_ESM.eps (5.6 mb)
High resolution image file (EPS 19.0 MB)

References

  1. 1.
    Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA. Epidemiological studies on Brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev. 1996;5:733–48.PubMedGoogle Scholar
  2. 2.
    Kolonel LN, Hankin JH, Whittemore AS, Wu AH, Gallagher RP, Wilkens LR, John EM, Howe GR, Dreon DM, West DW, Paffenbarger RS Jr. Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. Cancer Epidemiol Biomarkers Prev. 2000;9:795–804.PubMedGoogle Scholar
  3. 3.
    Zhang SM, Hunter DJ, Rosner BA, Giovannucci EL, Colditz GA, Speizer FE, Willett WC. Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin’s lymphoma among women. Cancer Epidemiol Biomarkers Prev. 2000;9:477–85.PubMedGoogle Scholar
  4. 4.
    Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG. Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr. 2004;134:1134–8.PubMedGoogle Scholar
  5. 5.
    Hecht SS. Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 2000;32:395–411. doi: 10.1081/DMR-100102342.PubMedCrossRefGoogle Scholar
  6. 6.
    Conaway CC, Yang YM, Chung FL. Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr Drug Metab. 2002;3:233–55. doi: 10.2174/1389200023337496.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang Y, Talalay P, Cho CG, Posner GH. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A. 1992;89:2399–403. doi: 10.1073/pnas.89.6.2399.PubMedCrossRefGoogle Scholar
  8. 8.
    Brooks JD, Paton VG, Vidanes G. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev. 2001;10:949–54.PubMedGoogle Scholar
  9. 9.
    Zhang Y, Kensler TW, Cho CG, Posner GH, Talalay P. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci U S A. 1994;91:3147–50. doi: 10.1073/pnas.91.8.3147.PubMedCrossRefGoogle Scholar
  10. 10.
    Chung FL, Conaway CC, Rao CV, Reddy BS. Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 2000;21:2287–91. doi: 10.1093/carcin/21.12.2287.PubMedCrossRefGoogle Scholar
  11. 11.
    Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, et al. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A. 2002;99:7610–5. doi: 10.1073/pnas.112203099.PubMedCrossRefGoogle Scholar
  12. 12.
    Conaway CC, Wang CX, Pittman B, Yang YM, Schwartz JE, Tian D, et al. Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res. 2005;65:8548–57. doi: 10.1158/0008-5472.CAN-05-0237.PubMedCrossRefGoogle Scholar
  13. 13.
    Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S, et al. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 2000;60:1426–33.PubMedGoogle Scholar
  14. 14.
    Jackson SJT, Singletary KW. Sulforaphane: a naturally occurring mammary carcinoma mitotic inhibitor, which disrupts tubulin polymerization. Carcinogenesis 2004;25:219–27. doi: 10.1093/carcin/bgg192.PubMedCrossRefGoogle Scholar
  15. 15.
    Singh SV, Herman-Antosiewicz A, Singh AV, Lew KL, Srivastava SK, Kamath R, et al. Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2 mediated phosphorylation of Cdc25C. J Biol Chem. 2004;279:25813–22. doi: 10.1074/jbc.M313538200.PubMedCrossRefGoogle Scholar
  16. 16.
    Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E. Sulforaphane inhibits histone deacetylase activity in BPH-1, LNCaP and PC-3 prostate epithelial cells. Carcinogenesis 2006;27:811–9. doi: 10.1093/carcin/bgi265.PubMedCrossRefGoogle Scholar
  17. 17.
    Cho SD, Li G, Hu H, Jiang C, Kang KS, Lee YS, et al. Involvement of c-Jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by sulforaphane in DU145 prostate cancer cells. Nutr Cancer 2005;52:213–24. doi: 10.1207/s15327914nc5202_11.PubMedCrossRefGoogle Scholar
  18. 18.
    Choi S, Singh SV. Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable derived cancer chemopreventive agent. Cancer Res. 2005;65:2035–43. doi: 10.1158/0008-5472.CAN-04-3616.PubMedCrossRefGoogle Scholar
  19. 19.
    Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, et al. Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem. 2005;280:19911–24. doi: 10.1074/jbc.M412443200.PubMedCrossRefGoogle Scholar
  20. 20.
    Xu C, Shen G, Chen C, Gelinas C, Kong AN. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene 2005;24:4486–95. doi: 10.1038/sj.onc.1208656.PubMedCrossRefGoogle Scholar
  21. 21.
    Herman-Antosiewicz A, Johnson DE, Singh SV. Sulforaphane causes autophagy to inhibit release of cytochrome c and apoptosis in human prostate cancer cells. Cancer Res. 2006;66:5828–35. doi: 10.1158/0008-5472.CAN-06-0139.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim H, Kim EH, Eom YW, Kim WH, Kwon TK, Lee SJ, et al. Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer Res. 2006;66:1740–50. doi: 10.1158/0008-5472.CAN-05-1568.PubMedCrossRefGoogle Scholar
  23. 23.
    Pledgie-Tracy A, Sobolewski MD, Davidson NE. Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther. 2007;6:1013–21. doi: 10.1158/1535-7163.MCT-06-0494.PubMedCrossRefGoogle Scholar
  24. 24.
    Mi L, Wang X, Govind S, Hood BL, Veenstra TD, Conrads TP, et al. The role of protein binding in induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non-small lung cancer cells. Cancer Res. 2007;67:6409–16. doi: 10.1158/0008-5472.CAN-07-0340.PubMedCrossRefGoogle Scholar
  25. 25.
    Choi S, Lew KL, Xiao H, Herman-Antosiewicz A, Xiao D, Brown CK, et al. D,L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis 2007;28:151–62. doi: 10.1093/carcin/bgl144.PubMedCrossRefGoogle Scholar
  26. 26.
    Singh AV, Xiao D, Lew KL, Dhir R, Singh SV. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 2004;25:83–90. doi: 10.1093/carcin/bgg178.PubMedCrossRefGoogle Scholar
  27. 27.
    Singh SV, Warin R, Xiao D, Powolny AA, Stan SD, Arlotti JA, et al. Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Res. 2009;69(5):2117–25.PubMedCrossRefGoogle Scholar
  28. 28.
    King MP, Attadi G. Mitochondria-mediated transformation of human rho(0) cells. Methods Enzymol. 1996;264:313–34. doi: 10.1016/S0076-6879(96)64030-0.PubMedCrossRefGoogle Scholar
  29. 29.
    Xiao D, Srivastava SK, Lew KL, Zeng Y, Hershberger P, Johnson CS, et al. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinogenesis 2003;24:891–7. doi: 10.1093/carcin/bgg023.PubMedCrossRefGoogle Scholar
  30. 30.
    Xiao D, Powolny AA, Singh SV. Benzyl isothiocyanate targets mitochondrial respiratory chain to trigger ROS-dependent apoptosis in human breast cancer cells. J Biol Chem. 2008;283:30151–63. doi: 10.1074/jbc.M802529200.PubMedCrossRefGoogle Scholar
  31. 31.
    Xiao D, Choi S, Johnson DE, Vogel VG, Johnson CS, Trump DL, et al. Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene 2004;23:5594–606. doi: 10.1038/sj.onc.1207747.PubMedCrossRefGoogle Scholar
  32. 32.
    Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C. A new method for the cytofluorimetric analysis of mitochondrial membrane potentials using the J-aggregate forming lipophilic cation 5, 5′, 6, 6′-tetrachloro-1, 1′, 3, 3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). Biochem Biophys Res Commun. 1993;197:40–5. doi: 10.1006/bbrc.1993.2438.PubMedCrossRefGoogle Scholar
  33. 33.
    Buchet K, Godinot C. Functional F1-ATPase essential in maintaining growth and membrane potential of human mitochondrial-DNA depleted ρ° cells. J Biol Chem. 1998;273:22983–9. doi: 10.1074/jbc.273.36.22983.PubMedCrossRefGoogle Scholar
  34. 34.
    Chandel NS, Schumacker PT. Cells depleted of mitochondrial DNA (rho0) yield insight into physiological mechanisms. FEBS Lett. 1999;454:173–6. doi: 10.1016/S0014-5793(99)00783-8.PubMedCrossRefGoogle Scholar
  35. 35.
    Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor 1 α during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275:25130–8. doi: 10.1074/jbc.M001914200.PubMedCrossRefGoogle Scholar
  36. 36.
    Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, et al. Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci U S A. 2006;103:4952–7. doi: 10.1073/pnas.0511288103.PubMedCrossRefGoogle Scholar
  37. 37.
    Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;21:5720–8. doi: 10.1093/emboj/19.21.5720.CrossRefGoogle Scholar
  38. 38.
    Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61:439–44.PubMedGoogle Scholar
  39. 39.
    Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res. 2003;63:2103–8.PubMedGoogle Scholar
  40. 40.
    Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res. 2004;64:4286–93. doi: 10.1158/0008-5472.CAN-03-3084.PubMedCrossRefGoogle Scholar
  41. 41.
    Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004;11:448–57. doi: 10.1038/sj.cdd.4401359.PubMedCrossRefGoogle Scholar
  42. 42.
    Xiao D, Lew KL, Zeng Y, Xiao H, Marynowski SW, Dhir R, et al. Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential. Carcinogenesis 2006;27:2223–34. doi: 10.1093/carcin/bgl087.PubMedCrossRefGoogle Scholar
  43. 43.
    Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by B-phenylethyl isothiocyanate. Cancer Cell. 2006;10:241–52. doi: 10.1016/j.ccr.2006.08.009.PubMedCrossRefGoogle Scholar
  44. 44.
    Mi L, Wang X, Govind S, Hood BL, Veenstra TD, Conrads TP, et al. The role of protein binding in induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non-small lung cancer cells. Cancer Res. 2007;67:6409–16. doi: 10.1158/0008-5472.CAN-07-0340.PubMedCrossRefGoogle Scholar
  45. 45.
    Buccellato LJ, Tso M, Akinci OI, Chandel NS, Budinger GRS. Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. J Biol Chem. 2004;279:6753–60. doi: 10.1074/jbc.M310145200.PubMedCrossRefGoogle Scholar
  46. 46.
    Gottlieb E, Vander Heiden MG, Thompson CB. Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol. 2000;20:5680–9. doi: 10.1128/MCB.20.15.5680-5689.2000.PubMedCrossRefGoogle Scholar
  47. 47.
    Cai J, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem. 1998;273:11401–4. doi: 10.1074/jbc.273.19.11401.PubMedCrossRefGoogle Scholar
  48. 48.
    Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994;266:1821–8. doi: 10.1126/science.7997877.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci. 2007;120:4155–66. doi: 10.1242/jcs.011163.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dong Xiao
    • 1
  • Anna A. Powolny
    • 1
  • Jedrzej Antosiewicz
    • 2
  • Eun-Ryeong Hahm
    • 1
  • Ajay Bommareddy
    • 1
  • Yan Zeng
    • 3
  • Dhimant Desai
    • 4
  • Shantu Amin
    • 4
  • Anna Herman-Antosiewicz
    • 5
  • Shivendra V. Singh
    • 1
    • 3
    • 6
    Email author
  1. 1.Department of Pharmacology & Chemical Biology, School of MedicineUniversity of PittsburghPittsburghUSA
  2. 2.Department of Bioenergetics and Physiology of ExerciseMedical University of GdanskGdanskPoland
  3. 3.University of Pittsburgh Cancer InstitutePittsburghUSA
  4. 4.Department of PharmacologyPenn State Milton S. Hershey Medical CenterHersheyUSA
  5. 5.Department of Molecular BiologyUniversity of GdanskGdanskPoland
  6. 6.Hillman Cancer Center Research PavilionUniversity of PittsburghPittsburghUSA

Personalised recommendations