Pharmaceutical Research

, Volume 26, Issue 7, pp 1701–1710 | Cite as

Creating Functional Vesicle Assemblies from Vesicles and Nanoparticles

  • Robert J. Mart
  • Kwan Ping Liem
  • Simon J. WebbEmail author
Research Paper


Vesicles (liposomes) have been shown to be excellent vehicles for drug delivery, yet assemblies of vesicles (vesicle aggregates) have been used infrequently in this context. However vesicle assemblies have useful properties not available to individual vesicles; their size can cause localisation in specific tissues and they can incorporate more functionality than is possible with individual vesicles. This article reviews progress on controlling the properties of vesicle assemblies in vitro, applications of vesicle assemblies in vivo, and our recent creation of magnetic nanoparticle–vesicle assemblies. The latter assemblies contain vesicles crosslinked by coated Fe3O4 nanoparticles and this inclusion of magnetic functionality makes them magnetically responsive, potentially allowing magnetically-induced contents release. This article describes further studies on the in vitro formation of these magnetic nanoparticle–vesicle assemblies, including the effect of changing magnetic nanoparticle concentration, pH, adhesive lipid structure and bilayer composition. These investigations have led to the development of thermally-sensitive magnetic nanoparticle–vesicle assemblies that release encapsulated methotrexate on warming.


aggregation liposome magnetic nanoparticle magnetically responsive magnetoliposome 



This work was supported by the BBSRC (KPL) and the Leverhulme Trust (RJM).


  1. 1.
    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145–60. doi: 10.1038/nrd1632.PubMedCrossRefGoogle Scholar
  2. 2.
    Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm 2002;240:95–102. doi: 10.1016/S0378-5173(02)00129-1.PubMedCrossRefGoogle Scholar
  3. 3.
    Kiessling LL, Gestwicki JE, Strong LE. Synthetic multivalent ligands in the exploration of cell–surface interactions. Curr Opin Chem Biol 2000;4:696–703. doi: 10.1016/S1367-5931(00)00153-8.PubMedCrossRefGoogle Scholar
  4. 4.
    Menger FM, Bian J, Sizova E, Martinson DE, Seredyuk VA. Bolaforms with fourteen galactose units: a proposed site-directed cohesion of cancer cells. Org Lett 2004;6:261–4. doi: 10.1021/ol030135k.PubMedCrossRefGoogle Scholar
  5. 5.
    Gestwicki JE, Strong LE, Cairo CW, Boehm FJ, Kiessling LL. Cell aggregation by scaffolded receptor clusters. Chem Biol 2002;9:163–9. doi: 10.1016/S1074-5521(02)00102-3.PubMedCrossRefGoogle Scholar
  6. 6.
    Chiruvolu S, Walker S, Israelachvili J, Schmitt FJ, Leckband D, Zasadzinski JA. Higher order self-assembly of vesicles by site-specific binding. Science 1994;264:1753–6. doi: 10.1126/science.8209255.PubMedCrossRefGoogle Scholar
  7. 7.
    Vermette P, Taylor S, Dunstan D, Meagher L. Control over PEGylated-liposome aggregation by neutravidin-biotin interactions investigated by photon correlation spectroscopy. Langmuir 2002;18:505–11. doi: 10.1021/la0109967.CrossRefGoogle Scholar
  8. 8.
    Ogihara-Umeda I, Sasaki T, Nishigori H. Active removal of radioactivity in the blood circulation using biotin-bearing lipsomes and avidin for rapid tumour imaging. Eur J Nucl Med 1993;20:170–2. doi: 10.1007/BF00168879.PubMedCrossRefGoogle Scholar
  9. 9.
    Ogihara-Umeda I, Sasaki T, Toyama H, Oda K, Senda M, Nishigori H. Rapid tumor imaging by active background reduction using biotin-bearing liposomes and avidin. Cancer Res 1994;54:463–7.PubMedGoogle Scholar
  10. 10.
    Phillips WT, Klipper R, Goins B. Novel method of greatly enhanced delivery of liposomes to lymph nodes. J Pharmacol Exp Ther 2000;295:309–13.PubMedGoogle Scholar
  11. 11.
    Phillips WT, Medina LA, Klipper R, Goins B. A novel approach for the increased delivery of pharmaceutical agents to peritoneum and associated lymph nodes. J Pharmacol Exp Ther 2002;303:11–6. doi: 10.1124/jpet.102.037119.PubMedCrossRefGoogle Scholar
  12. 12.
    Medina LA, Calixto SM, Klipper R, Phillips WT, Goins B. Avidin/biotin–liposome system injected in the pleural space for drug delivery to mediastinal lymph nodes. J Pharm Sci 2004;93:2595–608. doi: 10.1002/jps.20163.PubMedCrossRefGoogle Scholar
  13. 13.
    Fung VWH, Chiu GNC, Mayer LD. Application of purging biotinylated liposomes from plasma to elucidate influx and efflux processes associated with accumulation of liposomes in solid tumors. Biochim Biophys Acta 2003;1611:63–9. doi: 10.1016/S0005-2736(02)00704-6.PubMedCrossRefGoogle Scholar
  14. 14.
    Paleos CM, Sideratou Z, Tsiourvas D. Molecular recognition of complementary liposomes in modeling cell - cell recognition. ChemBioChem 2001;2:305–10. doi: 10.1002/1439-7633(20010504)2:5<305::AID-CBIC305>3.0.CO;2-9.PubMedCrossRefGoogle Scholar
  15. 15.
    Moghimi SM, Moghimi M. Enhanced lymph node retention of subcutaneously injected IgG1-PEG2000-liposomes through pentameric IgM antibody-mediated vesicular aggregation. Biochim Biophys Acta 2008;1778:51–5. doi: 10.1016/j.bbamem.2007.08.033.PubMedCrossRefGoogle Scholar
  16. 16.
    Sideratou Z, Foundis J, Tsiourvas D, Nezis IP, Papadimas G, Paleos CM. A novel dendrimeric “glue” for adhesion of phosphatidyl choline-based liposomes. Langmuir 2002;18:5036–9. doi: 10.1021/la020150i.CrossRefGoogle Scholar
  17. 17.
    Tsogas I, Tsiourvas D, Nounesis G, Paleos CM. Interaction of poly-l-arginine with dihexadecyl phosphate/phosphatidylcholine liposomes. Langmuir 2005;21:5997–6001. doi: 10.1021/la050475+.PubMedCrossRefGoogle Scholar
  18. 18.
    Pantos A, Tsogas I, Paleos CM. Guanidinium group: a versatile moiety inducing transport and multicompartmentalization in complementary membranes. BBA Biomembranes 2008;1778:11–23. doi: 10.1016/j.bbamem.2007.12.003.CrossRefGoogle Scholar
  19. 19.
    Wang X, Mart RJ, Webb SJ. Vesicle aggregation by multivalent ligands: relating crosslinking ability to surface affinity. Org Biomol Chem 2007;5:2498–505. doi: 10.1039/b706662g.PubMedCrossRefGoogle Scholar
  20. 20.
    Webb SJ, Trembleau L, Mart RJ, Wang X. Membrane composition determines the fate of aggregated vesicles. Org Biomol Chem 2005;3:3615–7. doi: 10.1039/b510647h.PubMedCrossRefGoogle Scholar
  21. 21.
    Marchi-Artzner V, Gulik-Krzywicki T, Guedeau-Boudeville M-A, Gosse C, Sanderson JM, Dedieu J-C, Lehn J-M. Selective adhesion, lipid exchange and membrane-fusion processes between vesicles of various sizes bearing complementary molecular recognition groups. ChemPhysChem 2001;2:367–76. doi: 10.1002/1439-7641(20010618)2:6<367::AID-CPHC367>3.0.CO;2-#.CrossRefGoogle Scholar
  22. 22.
    Menger FM, Seredyuk VA. Internally catalyzed separation of adhered lipid membranes. J Am Chem Soc 2003;125:11800–1. doi: 10.1021/ja030334z.PubMedCrossRefGoogle Scholar
  23. 23.
    Sideratou Z, Tsiourvas D, Paleos CM. Molecular recognition of complementary liposomes: the enhancing role of cholesterol. Langmuir 2000;16:9186–91. doi: 10.1021/la000166d.CrossRefGoogle Scholar
  24. 24.
    Barragan V, Menger FM, Caran KL, Vidil C, Morere A, Montero J-L. A mannose-6-phosphonate-cholesterylamine conjugate as a specific molecular adhesive linking cancer cells with vesicles. Chem Commun 2001. 85–6. doi: 10.1039/b008446h.
  25. 25.
    Webb SJ, Greenaway K, Bayati M, Trembleau L. Lipid fluorination enables phase separation from fluid phospholipid bilayers. Org Biomol Chem 2006;4:2399–407. doi: 10.1039/b603373n.PubMedCrossRefGoogle Scholar
  26. 26.
    Mart RJ, Liem KP, Wang X, Webb SJ. The effect of receptor clustering on vesicle–vesicle adhesion. J Am Chem Soc 2006;128:14462–3. doi: 10.1021/ja0657612.PubMedCrossRefGoogle Scholar
  27. 27.
    Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5:161–71. doi: 10.1038/nrc1566.PubMedCrossRefGoogle Scholar
  28. 28.
    Wu G, Mikhailovsky A, Khant HA, Fu C, Chiu W, Zasadzinski JA. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc 2008;130:8175–7. doi: 10.1021/ja802656d.PubMedCrossRefGoogle Scholar
  29. 29.
    Dif A, Henry E, Artzner F, Baudy-Floc’h M, Schmutz M, Dahan M, Marchi-Artzner V. Interaction between water-soluble peptidic CdSe/ZnS nanocrystals and membranes: formation of hybrid vesicles and condensed lamellar phases. J Am Chem Soc 2008;130:8289–96. doi: 10.1021/ja711378g.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang L, Dammann K, Baeb SC, Granick S. Ligand–receptor binding on nanoparticle-stabilized liposome surfaces. Soft Matter 2007;3:551–3. doi: 10.1039/b618172d.CrossRefGoogle Scholar
  31. 31.
    Arruebo M, Fernández-Pacheco F, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nanotoday 2007;2:22–32.Google Scholar
  32. 32.
    Corot C, Robert P, Idée J-M, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliver Rev 2006;58:1471–504. doi: 10.1016/j.addr.2006.09.013.CrossRefGoogle Scholar
  33. 33.
    Sabaté R, Barnadas-Rodríguez R, Callejas-Fernández J, Hidalgo-Álvarez R, Estelrich J. Preparation and characterization of extruded magnetoliposomes. Int J Pharm 2008;347:156–62. doi: 10.1016/j.ijpharm.2007.06.047.PubMedCrossRefGoogle Scholar
  34. 34.
    Wijaya A, Hamad-Schifferli K. High-density encapsulation of Fe3O4 nanoparticles in lipid vesicles. Langmuir 2007;23:9546–50. doi: 10.1021/la701128b.PubMedCrossRefGoogle Scholar
  35. 35.
    Babincová M, Čičmanec P, Altanerová V, Altaner Č, Babinec P. AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy. Bioelectrochem 2002;55:17–9. doi: 10.1016/S1567-5394(01)00171-2.CrossRefGoogle Scholar
  36. 36.
    Dandamudi S, Campbell RB. The drug loading, cytotoxicity and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials 2007;28:4673–83. doi: 10.1016/j.biomaterials.2007.07.024.PubMedCrossRefGoogle Scholar
  37. 37.
    Babincová M, Altanerová V, Lambert M, Altaner Č, Šramka M, Machová E, Babinec P. Site specific in vivo targeting of magnetoliposomes in external magnetic field. Z Naturforsch 2000;55c:278–81.Google Scholar
  38. 38.
    Liem KP, Mart RJ, Webb SJ. Magnetic assembly and patterning of vesicle/nanoparticle aggregates. J Am Chem Soc 2007;129:12080–1. doi: 10.1021/ja075000e.PubMedCrossRefGoogle Scholar
  39. 39.
    Alonso JM, Llácer C, Vila AO, Figueruelo JE, Molina FJ. Effect of the osmotic conditions on the value of ζ potential of DMPC multilamellar liposomes. Colloids Surfaces A: Physicochem Eng Aspects 1995;95:11–4. doi: 10.1016/0927-7757(94)02994-4.CrossRefGoogle Scholar
  40. 40.
    Zhang Z-Y, Shum P, Yates M, Messersmith PB, Thompson DH. Formation of fibrinogen-based hydrogels using phototriggerable diplasmalogen liposomes. Bioconj Chem 2002;13:640–6. doi: 10.1021/bc015580j.CrossRefGoogle Scholar
  41. 41.
    Shum P, Kim J-M, Thompson DH. Phototriggering of liposomal drug delivery systems. Adv Drug Deliv Rev 2001;53:273–84. doi: 10.1016/S0169-409X(01)00232-0.PubMedCrossRefGoogle Scholar
  42. 42.
    Napoli A, Valentini M, Tirelli N, Müller M, Hubbell JA. Oxidation-responsive polymeric vesicles. Nat Mater 2004;3:183–9. doi: 10.1038/nmat1081.PubMedCrossRefGoogle Scholar
  43. 43.
    Lomas H, Canton I, MacNeil S, Du J, Armes SP, Ryan AJ, Lewis AL, Battaglia G. Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv Mater 2007;19:4238–43. doi: 10.1002/adma.200700941.CrossRefGoogle Scholar
  44. 44.
    Messersmith PB, Starke S. Thermally triggered calcium phosphate formation from calcium-loaded liposomes. Chem Mater 1998;10:117–24. doi: 10.1021/cm9702528.CrossRefGoogle Scholar
  45. 45.
    Messersmith PB, Vallabhanei S, Nguyen V. Preparation of calcium-loaded liposomes and their use in calcium phosphate formation. Chem Mater 1998;10:109–16. doi: 10.1021/cm970251f.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Robert J. Mart
    • 1
  • Kwan Ping Liem
    • 1
  • Simon J. Webb
    • 1
    Email author
  1. 1.Manchester Interdisciplinary Biocentre and the School of ChemistryUniversity of ManchesterManchesterUK

Personalised recommendations