Pharmaceutical Research

, 26:1140 | Cite as

Anti-Androgen Receptor Signaling and Prostate Cancer Inhibitory Effects of Sucrose- and Benzophenone-Compounds

Research Paper



Novel agents that target multiple aspects of androgen receptor (AR) signaling are desirable for chemoprevention and treatment of prostate cancer (PCa). We aimed to identify compounds isolated from medicinal herbs as such drug candidates.


In the LNCaP human androgen sensitive PCa cell model, we tested five compounds purified from Lindera fruticosa Hemsley in the range of 10–50 μM for growth inhibition and AR-prostate specific antigen (PSA) suppressing potency. We determined the relationship between these activities and P53 tumor suppressor protein activation and apoptotic cleavage of PARP. We compared these compounds to the anti-androgen drug Casodex/bicalutamide to identify mechanistic novelty.


Among 3 sucrose compounds, beta-D-(3,4-di-sinapoyl)fructofuranosyl-alpha-D-(6-sinapoyl)glucopyranoside decreased AR and PSA mRNA and protein levels in LNCaP cells and inhibited androgen-stimulated AR translocation from the cytosol to the nucleus. This compound also increased P53 Ser15 phosphorylation and PARP cleavage in LNCaP cells, but required higher dosage than for suppressing AR-PSA. Interestingly, this compound did not inhibit the growth of RWPE-1 non-transformed prostate epithelial cells. The benzophenone compound 2-methoxy-3,4-(methylenedioxy)benzophenone suppressed PSA and AR in LNCaP cells without apoptosis.


Our data support novel anti-AR actions of these herbal compounds distinct from Casodex and merit further investigation as drug candidates.


androgen receptor benzophenone prostate cancer PSA sucrose derivatives 



This work was supported in part by The Hormel Foundation, Prostate Cancer Foundation, by MRC grant R13-2007-019-00000-0 from Korea Ministry of Education, Science and Technology. The authors thank Todd Schuster for performing flow cytometry analyses.

Conflict of interest statements

All authors have no personal or financial conflict of interest and have not entered into any agreement that could interfere with our access to the data on the research or on our ability to analyze the data independently, to prepare manuscripts and to publish them.


  1. 1.
    A. Jemal, R. Siegel, E. Ward et al. Cancer statistics, 2008. CA Cancer J. Clin. 58(2):71–96 (2008) Mar–Apr. doi:10.3322/CA.2007.0010.PubMedCrossRefGoogle Scholar
  2. 2.
    M. E. Taplin, and S. P. Balk. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J. Cell Biochem. 91(3):483–490 (2004) Feb 15. doi:10.1002/jcb.10653.PubMedCrossRefGoogle Scholar
  3. 3.
    C. A. Heinlein, and C. Chang. Androgen receptor in prostate cancer. Endocr. Rev. 25(2):276–308 (2004) Apr. doi:10.1210/er.2002-0032.PubMedCrossRefGoogle Scholar
  4. 4.
    G. Andriole, N. Bruchovsky, L. W. Chung et al. Dihydrotestosterone and the prostate: the scientific rationale for 5alpha-reductase inhibitors in the treatment of benign prostatic hyperplasia. J. Urol. 172(4 Pt 1):1399–1403 (2004) Oct. doi:10.1097/01.ju.0000139539.94828.29.PubMedCrossRefGoogle Scholar
  5. 5.
    I. M. Thompson, P. J. Goodman, C. M. Tangen et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349(3):215–224 (2003) Jul 17. doi:10.1056/NEJMoa030660.PubMedCrossRefGoogle Scholar
  6. 6.
    C. Jiang, H. J. Lee, G. X. Li et al.. Potent antiandrogen and androgen receptor activities of an Angelica gigas-containing herbal formulation: identification of decursin as a novel and active compound with implications for prevention and treatment of prostate cancer. Cancer Res. 66(1):453–463 (2006) Jan 1. doi:10.1158/0008-5472.CAN-05-1865.PubMedCrossRefGoogle Scholar
  7. 7.
    J. Guo, C. Jiang, Z. Wang et al. A novel class of pyranocoumarin anti-androgen receptor signaling compounds. Mol. Cancer Ther. 6(3):907–917 (2007) Mar. doi:10.1158/1535-7163.MCT-06-0231.PubMedCrossRefGoogle Scholar
  8. 8.
    M. C. Song, F. Nigussie, H. J. Yang, H. H. Kim, J. Y. Kim, D. K. Chung, and N. I. Baek. Phenolic glycosides from Lindera fruticosa root and their inhibitory activity on osteoclast differentiation. Chem. Pharm. Bull. (Tokyo). 56(5):707–710 (2008) May. doi:10.1248/cpb.56.707.CrossRefGoogle Scholar
  9. 9.
    M. C. Song, F. Nigussie, T. S. Jeong, C. Y. Lee, F. Regassa, T. Markos, and N. I. Baek. Phenolic compounds from the roots of Lindera fruticosa. J. Nat. Prod. 69(5):853–855 (2006). May. doi:10.1021/np060048b.PubMedCrossRefGoogle Scholar
  10. 10.
    C. Costa, A. Bertazzo, G. Allegri, O. Curcuruto, and P. Traldi. Indole Alkaloids from the Roots of an African Plant Securidaca Longipedunculata. I. Isolation by column chromatography and preliminary structural characterization by mass spectrometry. J. Heterocyc. Chem. 29:1641–1647 (1992).CrossRefGoogle Scholar
  11. 11.
    N. de Tommasi, S. Piacente, F. de Suione, and C. Pizza. New sucrose derivatives from the bark of Securidaca longipedunculata. J. Nat. Prod. 56(1):134–137 (1993). doi:10.1021/np50091a020.PubMedCrossRefGoogle Scholar
  12. 12.
    W.-Y. Kang, Z.-M. Wang, Z.-Q. Li, and X.-J. Xu. Three New Compounds from Securidaca inappendiculata. Helvetica Chim. Acta. 88:2771–2776 (2005). doi:10.1002/hlca.200590217.CrossRefGoogle Scholar
  13. 13.
    S. D. Cho, C. Jiang, B. Malewicz et al. Methyl selenium metabolites decrease prostate-specific antigen expression by inducing protein degradation and suppressing androgen-stimulated transcription. Mol. Cancer Ther. 3:605–611 (2004).PubMedGoogle Scholar
  14. 14.
    A. Krishan. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J. Cell Biol. 66:188–193 (1975). doi:10.1083/jcb.66.1.188.PubMedCrossRefGoogle Scholar
  15. 15.
    C. J. Sherr, and J. M. Roberts. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13:1501–1512 (1999). doi:10.1101/gad.13.12.1501.PubMedCrossRefGoogle Scholar
  16. 16.
    H. Miyamoto, E. M. Messing, and C. Chang. Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate. 61:332–353 (2004). doi:10.1002/pros.20115.PubMedCrossRefGoogle Scholar
  17. 17.
    B. J. Feldman, and D. Feldman. The development of androgen-independent prostate cancer. Nat. Rev. Cancer. 1:34–45 (2001). doi:10.1038/35094009.PubMedCrossRefGoogle Scholar
  18. 18.
    P. Koivisto, J. Kononen, C. Palmberg, T. Tammela, E. Hyytinen, J. Isola et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57:314–319 (1997).PubMedGoogle Scholar
  19. 19.
    C. D. Chen, D. S. Welsbie, C. Tran et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10:33–39 (2004). doi:10.1038/nm972.PubMedCrossRefGoogle Scholar
  20. 20.
    S. Chen, C. S. Song, Y. Lavrovsky et al. Catalytic cleavage of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme. Mol. Endocrinol. (Baltimore, Md). 12(10):1558–1566 (1998)Oct.CrossRefGoogle Scholar
  21. 21.
    O. L. Zegarra-Moro, L. J. Schmidt, H. Huang, and D. J. Tindall. Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res. 62(4):1008–1013 (2002)Feb 15.PubMedGoogle Scholar
  22. 22.
    K. Kuratsukuri, K. Sugimura, K. Harimoto, H. Kawashima, and T. Kishimoto. “Decoy” of androgen-responsive element induces apoptosis in LNCaP cells. Prostate. 41(2):121–126 (1999) Oct 1. doi:10.1002/(SICI)1097-0045(19991001)41:2<121::AID-PROS6>3.0.CO;2-Q.PubMedCrossRefGoogle Scholar
  23. 23.
    X. Liao, S. Tang, J. B. Thrasher, T. L. Griebling, and B. Li. Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol. Cancer Ther. 4(4):505–515 (2005) Apr. doi:10.1158/1535-7163.MCT-04-0313.PubMedCrossRefGoogle Scholar
  24. 24.
    Y. Niu, S. Yeh, H. Miyamoto et al. Tissue prostate-specific antigen facilitates refractory prostate tumor progression via enhancing ARA70-regulated androgen receptor transactivation. Cancer Res. 68(17):7110–7119 (2008) Sep 1. doi:10.1158/0008-5472.CAN-07-6507.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Hormel InstituteUniversity of MinnesotaAustinUSA
  2. 2.Cancer Preventive Material Development Research Center and Institute, College of Oriental MedicineKyunghee UniversitySeoulRepublic of Korea
  3. 3.Graduate School of Biotechnology and Plant Metabolism Research CenterKyunghee UniversityYonginRepublic of Korea

Personalised recommendations