Pharmaceutical Research

, Volume 27, Issue 4, pp 530–543 | Cite as

New Techniques for Drug Delivery to the Posterior Eye Segment

  • Esther Eljarrat-Binstock
  • Jacob Pe’er
  • Abraham J. Domb
Expert Review


Ocular drug delivery has become an increasingly important field of research especially when treating posterior segment diseases of the eye, such as age-related macular degeneration, diabetic retinopathy, posterior uveitis and retinitis. These diseases are the leading causes of vision loss in developed countries which require repeated long-term administration of therapeutic agents. New drugs for the medication of the posterior ocular segment have emerged, but most drugs are delivered by repeated intravitreal injections associated with ocular complications. Advances in ocular drug delivery system research are expected to provide new tools for the treatment of the posterior segment diseases, providing improved drug penetration, prolonged action, higher efficacy, improved safety and less invasive administration, resulting in higher patient compliance. This review provides an insight into the recent progress and trends in ocular drug delivery systems for treating posterior eye segment diseases, with an emphasis on transscleral iontophoresis.


drug delivery Iontophoresis ocular posterior segment 


  1. 1.
    Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008;13:135–43.PubMedGoogle Scholar
  2. 2.
    Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: Prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58:1164–81.PubMedGoogle Scholar
  3. 3.
    Chastain JE. General considerations in ocular drug delivery. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker, Inc.; 2003. p. 59–107.Google Scholar
  4. 4.
    Ali Y, Lehmussaari K. Industrial perspective in ocular drug delivery. Advanced Drug Delivery Reviews. 2006;58:1258–68.PubMedGoogle Scholar
  5. 5.
    Ding SL. Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today. 1998;1:328–35.Google Scholar
  6. 6.
    Sultana Y, Jain R, Aqil M, Ali A. Review of ocular drug delivery. Current Drug Delivery. 2006;3:207–17.PubMedGoogle Scholar
  7. 7.
    K. M. Bapatla and G. Hecht. Ophthalmic ointments and suspensions. In H. A. Lieberman, R. M. Rieger, and G. S. Banker (eds.), Pharmaceutical dosage forms: disperse systems, Marcel Dekker, Inc., 2006, pp. 357–397Google Scholar
  8. 8.
    Schoenwald RD. Ocular drug delivery — pharmacokinetic considerations. Clin Pharmacokinet. 1990;18:225–69.Google Scholar
  9. 9.
    Lee VHL, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol. 1986;2:67.PubMedGoogle Scholar
  10. 10.
    Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharm Phys. 2000;27:558–62.Google Scholar
  11. 11.
    Ellis PP. Basic considerations. In: Ellis PP, editor. Ocular therapeutics and pharmacology. St Louis, Missouri: The C.V. Mosby Company; 1985. p. 3–27.Google Scholar
  12. 12.
    Rabinovich-Guilatt L, Couvreur P, Lambert G, Dubernet C. Cationic vectors in ocular drug delivery. J Drug Target. 2004;12:623–33.PubMedGoogle Scholar
  13. 13.
    Robinson JR. Ocular anatomy and physiology relevant to ocular drug delivery. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker; 1993. p. 29–57.Google Scholar
  14. 14.
    Le Bourlais C, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems — Recent advances. Prog Retin Eye Res. 1998;17:33–58.PubMedGoogle Scholar
  15. 15.
    Eljarrat-Binstock E, Frucht-Pery J, Domb A. Iontophoresis for ocular drug delivery. In: Touitou E, Barry BW, editors. Enhancement in drug delivery. Boca Raton: CRC press; 2006.Google Scholar
  16. 16.
    Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: Emphasis on transscleral iontophoresis. Adv Drug Deliv Rev. 2005;57:2063–79.PubMedGoogle Scholar
  17. 17.
    Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M, et al. Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst. 1999;16:85–146.PubMedGoogle Scholar
  18. 18.
    Raviola G. The stractural basis of the blod-ocular barriers. Exp Eye Res. 1977;25:27.PubMedGoogle Scholar
  19. 19.
    Weijtens O, Feron EJ, Schoemaker RC, Cohen AF, Lentjes E, Romijn F, et al. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. American Journal of Ophthalmology. 1999;128:192–7.PubMedGoogle Scholar
  20. 20.
    Weijtens O, Schoemaker RC, Romijn F, Cohen AF, Lentjes E, Van Meurs JC. Intraocular penetration and systemic absorption after topical application of dexamethasone disodium phosphate. Ophthalmology. 2002;109:1887–91.PubMedGoogle Scholar
  21. 21.
    Lee TWY, Robinson JR. Drug delivery to the posterior segment of the eye: some insights on the penetration pathways after subconjunctival injection. J Ocul Pharm Ther. 2001;17:565–72.Google Scholar
  22. 22.
    Kothuri MK, Pinnamaneni S, Das NG. and D. S. K. Microparticles and nanoparticles in ocular drug delivery. In: Mitra AK, editor. Ophthalmic drug delivery systems. NY: Marcel Dekker, Inc.; 2003. p. 437–66.Google Scholar
  23. 23.
    Baeyens V, Percicot C, Zignani M, Deshpande AA, Kaltsatos V, Gurny R. Ocular drug delivery in veterinary medicine. Adv Drug Deliv Rev. 1997;28:335–61.PubMedGoogle Scholar
  24. 24.
    Mitra AK, Anand BS, Duvvuri S. Drug delivery to the eye. Advances in Organ Biology. 2006;10:307–51.Google Scholar
  25. 25.
    Jaffe GJ, Martin D, Callanan D, Pearson PA, Levy B, Comstock T. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis - Thirty-four-week results of a multicenter randomized clinical study. Ophthalmology. 2006;113:1020–7.PubMedGoogle Scholar
  26. 26.
    Guidetti B, Azema J, Malet-Martino M, Martino R. Delivery systems for the treatment of proliferative vitreoretinopathy: materials, devices and colloidal carriers. Current Drug Delivery. 2008;5:7–19.PubMedGoogle Scholar
  27. 27.
    Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, et al. Intraocular implants for extended drug delivery: Therapeutic applications. Advanced Drug Delivery Reviews. 2006;58:1182–202.PubMedGoogle Scholar
  28. 28.
    Kane FE, Burdan J, Cutino A, Green KE. Iluvien (TM): a new sustained delivery technology for posterior eye disease. Expert Opinion on Drug Delivery. 2008;5:1039–46.PubMedGoogle Scholar
  29. 29.
    Kato A, Kimura H, Okabe K, Okabe J, Kunou N, Ogura Y. Feasibility of drug delivery to the posterior pole of the rabbit eye with an episderal implant. Invest Ophthalmol Vis Sci. 2004;45:238–44.PubMedGoogle Scholar
  30. 30.
    Heller J. Ocular delivery using poly(ortho esters). Advanced Drug Delivery Reviews. 2005;57:2053–62.PubMedGoogle Scholar
  31. 31.
    Kuppermann BD, Blumenkranz MS, Haller JA, Williams GA, Weinberg DV, Chou C, et al. Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Archives of Ophthalmology. 2007;125:309–17.PubMedGoogle Scholar
  32. 32.
    Bochot A, Couvreur P, Fattal E. Intravitreal administration of antisense oligonucleotides: Potential of liposomal delivery. Progress in Retinal and Eye Research. 2000;19:131–47.PubMedGoogle Scholar
  33. 33.
    Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y. Drug delivery systems for vitreoretinal diseases. Progress in Retinal and Eye Research. 2004;23:253–81.PubMedGoogle Scholar
  34. 34.
    Cheng LY, Hostetler KY, Chaidhawangul S, Gardner MF, Beadle JR, Keefe KS, et al. Intravitreal toxicology and duration of efficacy of a novel antiviral lipid prodrug of ganciclovir in liposome formulation. Invest Ophthalmol Vis Sci. 2000;41:1523–32.PubMedGoogle Scholar
  35. 35.
    Ruiz-Moreno JM, Montero JA, Arias L, Sanabria MR, Coco R, Silva R, et al. Photodynamic therapy in subfoveal and juxtafoveal idiopathic and postinflammatory choroidal neovascularization. Acta Ophthalmol Scand. 2006;84:743–8.PubMedGoogle Scholar
  36. 36.
    Woodburn KW, Engelman CJ, Blumenkranz MS. CME photodynamic therapy for choroidal neovascularization — A review. Retin-J Retin Vitr Dis. 2002;22:391–405.Google Scholar
  37. 37.
    Kreuter J. Nanoparticles as bioadhesive ocular drug delivery systems. In: Lenaerts VM, Gurny R, editors. Bioadhesive Drug Delivery Systems. Boca Raton, Florida: CRC Press; 1990. p. 203–12.Google Scholar
  38. 38.
    Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules and nanoemulsions, as ocular drug carriers. J Pharm Sci. 1996;85:530–6.PubMedGoogle Scholar
  39. 39.
    De Campos AM, Sanchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A, Int J Pharm. 2001;224:159–68.Google Scholar
  40. 40.
    Fitzgerald P, Hadgraft J, Wilson CG. A gamma sintigraphic evaluation of the precorneal residence of liposomal formulations in the rabbit. J Pharm Pharmacol. 1987;39:487–90.PubMedGoogle Scholar
  41. 41.
    Gurny R, Boye T, Ibrahim H. Ocular therapy with nanoparticulate systems for controlled drug delivery. J Control Release. 1985;2:353–61.Google Scholar
  42. 42.
    Diepold RW, Kreuter J, Himber J, Gurny R, Lee VHL, Robinson JR, et al. Comparison of different models for the testing of pilocarpine eyedrops using conventional eyedrops as a novel depot formulation (nanoparticles). Graefe’s Arch Clin Exp Ophthalmol. 1989;227:188–93.Google Scholar
  43. 43.
    Zimmer AK, Chetoni P, Saettone MF, Zerbe H, Kreuter J. Evaluation of Pilocarpine-Loaded Albumin Particles as Controlled Drug-Delivery Systems for the Eye. 2. Coadministration with Bioadhesive and Viscous Polymers. J Control Release. 1995;33:31–46.Google Scholar
  44. 44.
    Vandervoort J, Ludwig A. Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Pharm Biopharm. 2004;57:251–61.PubMedGoogle Scholar
  45. 45.
    Marchal-Heussler L, Fessi H, Devissaguet JP, Hoffman M, Maincent P. Colloidal drug delivery systems for the eye. A comparison of the efficacy of three different polymers: polyisobutylcyanoacrylate, polylactic-coglycolic acid, poly-epsilon-caprolactone. Pharm Sci. 1992;2:98–104.Google Scholar
  46. 46.
    Merodio M, Irache JM, Valamanesh F, Mirshahi M. Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials. 2002;23:1587–94.PubMedGoogle Scholar
  47. 47.
    Losa C, Calvo P, Castro E, Vilajato JL, Alonso MJ. Improvement of Ocular Penetration of Amikacin Sulfate by Association to Poly(Butylcyanoacrylate) Nanoparticles. J Pharm Pharmacol. 1991;43:548–52.PubMedGoogle Scholar
  48. 48.
    Alonso MJ, Losu C, Seijo B, Torres D, Vila-Jato JL. Ner ophthalmic drug release systems: formulation and ocular disposition of amikacin loaded nanoparticles. 5th Int Conf Pharm Tech. 1989;1:77–83.Google Scholar
  49. 49.
    Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16:53–61.PubMedGoogle Scholar
  50. 50.
    Calvo P, Alonso MJ, Vila-Jato JL, Robinson JR. Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol. 1996;48:1147–52.PubMedGoogle Scholar
  51. 51.
    Bucolo C, Maltese A, Maugeri F, Busa B, Puglisi G, Pignatello R. Eudragit RL100 nanoparticle system for the ophthalmic delivery of cloricromene. J Pharm Pharmacol. 2004;56:841–6.PubMedGoogle Scholar
  52. 52.
    Calvo P, Sanchez A, Martinez J, Lopez MI, Calonge M, Pastor JC, et al. Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharm Res. 1996;13:311–5.PubMedGoogle Scholar
  53. 53.
    Le Bourlais C, Chevanne F, Turlin B, Acar L, Zia H, Sado PA, et al. Effect of cyclosporin A formulations on bovine corneal absorption: ex-vivo study. J microencapsul. 1997;14:457–67.PubMedGoogle Scholar
  54. 54.
    De Kozak Y, Andrieux K, Villarroya H, Klein C, Thillaye-Goldenberg B, Naud MC, et al. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol. 2004;34:3702–12.PubMedGoogle Scholar
  55. 55.
    Bejjani R, Benezra D, Cohen H, Rieger J, Andrieu C, Jeanny JC, et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis. 2005;11:124–32.PubMedGoogle Scholar
  56. 56.
    Bejjani RA, Behar-Cohen F, Benezra D, Gurny R, Delie F. Polymeric nanoparticles for drug delivery to the posterior segment of the eye. Chimia. 2005;59:344–7.Google Scholar
  57. 57.
    Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci. 2003;44:3562–9.PubMedGoogle Scholar
  58. 58.
    Eljarrat-Binstock E, Domb AJ. Nanoparticles in ocular drug delivery. In: Domb AJ, Tabata Y, Ravi Kumar MNV, Farber S, editors. Nanoparticles for pharmaceutical applications. California: American Scientific Publishers; 2007. p. 367–76.Google Scholar
  59. 59.
    Hsu J. Drug delivery methods for posterior segment disease. Curr Opin Ophthalmol. 2007;18:235–9.PubMedGoogle Scholar
  60. 60.
    Moritera T, Ogura Y, Yoshimura N, Honda Y, Wada R, Hyon SH, et al. Biodegradable Microspheres Containing Adriamycin in the Treatment of Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci. 1992;33:3125–30.PubMedGoogle Scholar
  61. 61.
    Peyman GA, Conway M, Khoobehi B, Soike K. Clearance of Microsphere-Entrapped 5-Fluorouracil and Cytosine-Arabinoside from the Vitreous of Primates. Int Ophthalmol. 1992;16:109–13.PubMedGoogle Scholar
  62. 62.
    Moritera T, Ogura Y, Honda Y, Wada R, Hyon SH, Ikada Y. Microspheres of Biodegradable Polymers as a Drug-Delivery System in the Vitreous. Invest Ophthalmol Vis Sci. 1991;32:1785–90.PubMedGoogle Scholar
  63. 63.
    Saishin Y, Silva RL, Saishin Y, Callahan K, Schoch C, Ahlheim M, et al. Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci. 2003;44:4989–93.PubMedGoogle Scholar
  64. 64.
    Carrasquillo KG, Ricker JA, Rigas IK, Miller JW, Gragoudas ES, Adamis AP. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic) acid microspheres. Invest Ophthalmol Vis Sci. 2003;44:290–9.PubMedGoogle Scholar
  65. 65.
    Conway BR. Recent patents on ocular drug delivery systems. Recent Patents on Drug Delivery & Formulation. 2008;2:1–8.Google Scholar
  66. 66.
    G. P. Cook, L. Burgess, J. Wing, T. Dowie, P. Calias, D. T. Shima, C. K., D. Allison, S. Volker, and P. Schmidt. Preparation and characterization of pegaptanib sustained release microsphere formulations for intraocular application, Invest Ophthalmol Vis Sci. 47:E-Abstract 5123 (2006).Google Scholar
  67. 67.
    Mainardes RM, Urban MCC, Cinto PO, Khalil NM, Chaud MV, Evangelista RC, et al. Colloidal carriers for ophthalmic drug delivery. Curr Drug Targets. 2005;6:363–71.PubMedGoogle Scholar
  68. 68.
    Fattal E, Bochot A. Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Advanced Drug Delivery Reviews. 2006;58:1203–23.PubMedGoogle Scholar
  69. 69.
    Dos Santos ALG, Bochet A, Fattal E. Intraocular delivery of oligonucleotides. Current Pharmaceutical Biotechnology. 2005;6:7–15.Google Scholar
  70. 70.
    Cai X, Conley S, Naash M. Nanoparticle applications in ocular gene therapy. Vision Research. 2008;48:319–24.PubMedGoogle Scholar
  71. 71.
    Paasonen L, Laaksonen T, Johans C, Yliperttula M, Kontturi K, Urth A. Gold nanoparticles enable selective light-induced contents release from liposomes. Journal of Controlled Release. 2007;122:86–93.PubMedGoogle Scholar
  72. 72.
    Irache JM, Merodio M, Arnedo A, Camapanero MA, Mirshahi M, Espuelas S. Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini-Reviews in Medicinal Chemistry. 2005;5:293–305.PubMedGoogle Scholar
  73. 73.
    Bochot A, Fattal E, Boutet V, Deverre JR, Jeanny JC, Chacun H, et al. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci. 2002;43:253–9.PubMedGoogle Scholar
  74. 74.
    L. Pitkanen, J. Pelkonen, M. Ruponen, S. Ronkko, and A. Urtti. Neural retina limits the nonviral gene transfer to retinal pigment epithelium in an in vitro bovine eye model, Aaps Journal. 6:(2004).Google Scholar
  75. 75.
    Pitkanen L, Ruponen M, Nieminen J, Urtti A. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharmaceutical Research. 2003;20:576–83.PubMedGoogle Scholar
  76. 76.
    Ng EWM, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature Reviews Drug Discovery. 2006;5:123–32.PubMedGoogle Scholar
  77. 77.
    Eljarrat-Binstock E, Domb AJ. Iontophoresis: A non-invasive ocular drug delivery. J Control Release. 2006;110:479–89.PubMedGoogle Scholar
  78. 78.
    Kasting GB. Theoretical models for iontophoretic delivery. Adv Drug Deliv Rev. 1992;9:177–99.Google Scholar
  79. 79.
    Pikal MJ. The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev. 2001;46:281–305.PubMedGoogle Scholar
  80. 80.
    Molokhia S, Jeong EK, Higuchi W, Li K. Examination of barriers and barrier alteration in transscleral iontophoresis. Journal of Pharmaceutical Sciences. 2008;97:831–44.PubMedGoogle Scholar
  81. 81.
    Bridger MW, Keene M, Graham JM, Healey R, Ammar MM. A device for iontophoretic anesthesia of the tympanic membrane. J Med Eng Technol. 1982;6:62–4.PubMedGoogle Scholar
  82. 82.
    Zempsky WT, Sullivan J, Paulson DM, Hoath SB. Evaluation of a low-dose lidocaine iontophoresis system for topical anesthesia in adults and children: A randomized, controlled trial. Clin Ther. 2004;26:1110–9.PubMedGoogle Scholar
  83. 83.
    Moppett IK, Szypula K, Yeoman PM. Comparison of EMLA and lidocaine iontophoresis for cannulation analgesia. Eur J Anaesthesiol. 2004;21:210–3.PubMedGoogle Scholar
  84. 84.
    Decou JM, Abrams RS, Hammond JH, Lowder LR, Gauderer MWL. Iontophoresis: a needle-free, electrical system of local anesthesia delivery for pediatric surgical office procedures. J Pediatr Surg. 1999;34:946–9.PubMedGoogle Scholar
  85. 85.
    Carter EP, Barrett AD, Heeley AF, Kuzemko JA. Improved sweat test method for the diagnosis of cystic fibrosis. Arch Dis Child. 1984;59:919–22.PubMedGoogle Scholar
  86. 86.
    Gangarosa LP, Hill JM, Thompson BL, Leggett C, Rissing JP. Iontophoresis of vidarabine monophosphate for herpes orolabialis. J Infect Dis. 1986;154:930–4.PubMedGoogle Scholar
  87. 87.
    Krauser JT. Hypersensitive teeth. Part II: Treatment. J Prosthet Dent. 1986;56:307–11.PubMedGoogle Scholar
  88. 88.
    Rigano W, Yanik M, Barone FA, Baibak G, Cislo C. Antibiotic iontophoresis in the management of burned ears. J Burn Care Rehabilitation. 1992;13:407–9.Google Scholar
  89. 89.
    Wirtz R. Die ionentherapie in der augenheilkunde. Klin Monatsbl Augenheilkd. 1908;46:543–79.Google Scholar
  90. 90.
    Myles ME, Loutsch JM, Higaki S, Hill JM. Ocular iontophoresis. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker, Inc.; 2003. p. 365–408.Google Scholar
  91. 91.
    Barza M, Peckman C, Baum J. Transscleral Iontophoresis of cefazolin, ticarcillin, and gentamicin in the rabbit. Ophthalmology. 1986;93:133–9.PubMedGoogle Scholar
  92. 92.
    Frucht-Pery J, Goren D, Solomon A, Siganos CS, Mechoulam H, Solomon A, et al. The distribution of gentamicin in the rabbit cornea following iontophoresis to the central cornea. J Ocul Pharmacol Ther. 1999;15:251–6.PubMedGoogle Scholar
  93. 93.
    Rootman DS, Hobden JA, Jantzen JA, Gonzalez JR, Ocallaghan RJ, Hill JM. Iontophoresis of tobramycin for the treatment of experimental pseudomonas keratitis in the rabbit. Arch Ophthalmol. 1988;106:262–5.PubMedGoogle Scholar
  94. 94.
    Yoshizumi MO, Cohen D, Verbukh I, Leinwand M, Kim J, Lee DA. Experimental transscleral iontophoresis of ciprofloxacin. J Ocular Pharmacol. 1991;7:163–7.Google Scholar
  95. 95.
    Eljarrat-Binstock E, Raiskup F, Stepensky D, Domb AJ, Frucht-Pery J. Delivery of gentamicin to the rabbit eye by drug-loaded hydrogel iontophoresis. Invest Ophthalmol Vis Sci. 2004;45:2543–8.PubMedGoogle Scholar
  96. 96.
    Hill JM, Park NH, Gangarosa LP, Hull DS, Tuggle CL, Bowman K, et al. Iontophoresis of vidarabine monophosphate into rabbit eyes. Invest Ophthlmol Vis Sci. 1978;17:473–6.Google Scholar
  97. 97.
    Lam TT, Fu J, Chu R, Stojack K, Siew E, Tso MOM. Intravitreal delivery of ganciclovir in rabbits by transscleral iontophoresis. J Ocul Pharmacol. 1994;10:571–5.PubMedGoogle Scholar
  98. 98.
    Grossman R, Lee DA. Transscleral and transcorneal iontophoresis of ketoconazole in the rabbit eye. Ophthalmology. 1989;96:724–9.PubMedGoogle Scholar
  99. 99.
    Behar-Cohen FF, El Aouni A, Gautier S, David G, Davis J, Chapon P, et al. Transscleral Coulomb-controlled iontophoresis of methylprednisolone into the rabbit eye: Influence of duration of treatment, current intensity and drug concentration on ocular tissue and fluid levels. Exp Eye Res. 2002;74:51–9.PubMedGoogle Scholar
  100. 100.
    Behar-Cohen FF, Parel JM, Pouliquen Y, Thillaye-Goldenberg B, Goureau O, Heydolph S, et al. Iontophoresis of dexamethasone in the treatment of endotoxin-induced-uveitis in rats. Exp Eye Res. 1997;65:533–45.PubMedGoogle Scholar
  101. 101.
    Lam TT, Edward DP, Zhu XA, Tso MOM. Transscleral iontophoresis of dexamethasone. Arch Ophthalmol. 1989;107:1368–71.PubMedGoogle Scholar
  102. 102.
    Eljarrat-Binstock E, Raiskup F, Frucht-Pery J, Domb AJ. Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J Control Release. 2005;106:386–90.PubMedGoogle Scholar
  103. 103.
    Eljarrat-Binstock E, Orucov F, Frucht-Pery J, Pe’er J, Domb AJ. Methylprednisolone delivery to the back of the eye using hydrogel iontophoresis. J Ocul Pharm Ther. 2008;24:344–50.Google Scholar
  104. 104.
    Hayden BC, Jockovich ME, Murray TG, Voigt M, Milne P, Kralinger M, et al. Pharmacokinetics of systemic versus focal Carboplatin chemotherapy in the rabbit eye: possible implication in the treatment of retinoblastoma. Invest Ophthalmol Vis Sci. 2004;45:3644–9.PubMedGoogle Scholar
  105. 105.
    Kondo M, Araie M. Iontophoresis of 5-fluorouracil into the conjunctiva and sclera. Invest Ophthalmol Vis Sci. 1989;30:583–5.PubMedGoogle Scholar
  106. 106.
    Eljarrat-Binstock E, Domb AJ, Orucov F, Frucht-Pery J, Pe’er J. Methotrexate delivery to the eye using transscleral hydrogel iontophoresis. Curr Eye Res. 2007;32:639–46.PubMedGoogle Scholar
  107. 107.
    Eljarrat-Binstock E, Domb AJ, Orucov F, Frucht-Pery J, Pe’er J. In vitro and in vivo evaluation of carboplatin delivery to the eye using hydrogel-iontophoresis. Curr Eye Res. 2008;33:269–75.PubMedGoogle Scholar
  108. 108.
    Asahara T, Shinomiya K, Naito T, Shiota H. Induction of gene into the rabbit eye by iontophoresis: Preliminary report. Jpn J Ophthalmol. 2001;45:31–9.PubMedGoogle Scholar
  109. 109.
    Berdugo M, Valamanesh F, Andrieu C, Klein C, Benezra D, Courtois Y, et al. Delivery of antisense oligonucleotide to the cornea by iontophoresis. Antisense Nucleic Acid Drug Dev. 2003;13:107–14.PubMedGoogle Scholar
  110. 110.
    Andrieu-Soler C, Doat M, Halhal M, Keller N, Jonet L, Benezra D, et al. Enhanced oligonucleotide delivery to mouse retinal cells using iontophoresis. Mol Vis. 2006;12:1098–107.PubMedGoogle Scholar
  111. 111.
    Voigt M, De Kozak Y, Halhal M, Courtois Y, Behar-Cohen F. Down-regulation of NOSII gene expression by iontophoresis of anti-sense oligonucleotide in endotoxin-induced uveitis. Biochem Biophys Res Commun. 2002;295:336–41.PubMedGoogle Scholar
  112. 112.
    Alvarez-Figueroa MJ, Blanco-Mendez J. Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int J Pharm. 2001;215:57–65.PubMedGoogle Scholar
  113. 113.
    Kishida A, Ikada Y. Hydrogels for biomedical and pharmaceutical applications. In: Dumitriu S, editor. Polymeric biomaterials. Inc, New York: Marcel Dekker; 2002. p. 133–45.Google Scholar
  114. 114.
    Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.PubMedGoogle Scholar
  115. 115.
    Banga AK, Chien YW. Hydrogel-based iontotherapeutic delivery devices for transdermal delivery of peptide/protein drugs. Pharm Res. 1993;10:697–702.PubMedGoogle Scholar
  116. 116.
    Fang JY, Hsu LR, Huang YB, Tsai YH. Evaluation of transdermal iontophoresis of enoxacin from polymer formulations: in vitro skin permeation and in vivo microdialysis using Wistar rat as an animal model. Int J Pharm. 1999;180:137–49.PubMedGoogle Scholar
  117. 117.
    Fang JY, Sung KC, Wang JJ, Chu CC, Chen KT. The effects of iontophoresis and electroporation on transdermal delivery of buprenorphine from solutions and hydrogels. J Pharm Pharmacol. 2002;54:1329–37.PubMedGoogle Scholar
  118. 118.
    Eljarrat-Binstock E, Bentolila A, Kumar N, Harel H, Domb A. Preparation, characterization and sterilization of hydrogel sponges for iontophoretic drug- delivery use. Polym Adv Tech. 2007;18:720–30.Google Scholar
  119. 119.
    Fischer GA, Parkinson TM, Szlek MA. OcuPhor - The future of ocular drug delivery. Drug Delivery Tech. 2002;2:50–2.Google Scholar
  120. 120.
    Parkinson TM, Ferguson E, Febbraro S, Bakhtyari A, King M, Mundasad M. Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther. 2003;19:145–51.PubMedGoogle Scholar
  121. 121.
    Parkinson TM, Miller DJ, Lloyd LB, Hamilton S, Brown S, Koss A, et al. The effects of in vivo iontophoresis on rabbit eye structure and retinal function. Invest Ophthalmol Vis Sci. 2000;41:S772.Google Scholar
  122. 122.
    Vollmer DL, Szlek MA, Kolb K, Lloyd LB, Parkinson TM. In vivo transscleral iontophoresis of amikacin to rabbit eyes. J Ocul Pharmacol Ther. 2002;18:549–58.PubMedGoogle Scholar
  123. 123.
    Hastings MS, Li SK, Miller DJ, Bernstein PS, Mufson D. Visulex: advancing iontophoresis for effective noninvasive back-to-the-eye therapeutics. Drug Delivery Tech. 2004;4:53–7.Google Scholar
  124. 124.
    Eljarrat-Binstock E, Orucov F, Aldouby Y, Frucht-Pery J, Domb AJ. Charged nanoparticles delivery to the eye using hydrogel iontophoresis. J Control Release. 2008;126:156–61.PubMedGoogle Scholar
  125. 125.
    Frucht-Pery J, Mechoulam H, Siganos CS, Ever-Hadani P, Shapiro M, Domb A. Iontophoresis-gentamicin delivery into the rabbit cornea, using a hydrogel delivery probe. Exp Eye Res. 2004;78:745–9.PubMedGoogle Scholar
  126. 126.
    J. W. Higuchi, W. I. Higuchi, S. K. Li, S. A. Molokhia, D. J. Miller, R. P. Kochambilli, K. Papangkorn, D. C. Mix, and A. L. Tuitupou. Noninvasive delivery of a transscleral sustained release depot of triamcinolone acetonide using the Visulex device to treat posterior uveitis, Invest Ophthalmol Vis Sci. 48:E-Abstract 5822 (2007).Google Scholar
  127. 127.
    W. Higuchi, A. L. Tuitupou, R. P. Kochambilli, D. C. Mix, G. Yan, J. W. Higuchi, and S. K. Li. Delivery of sustained release formulation of triamcinolone acetonide to the rabbit eye using the Visulex ocular iontophoresis device, Invest Ophthalmol Vis Sci. 47:E-Abstract 5108 (2006).Google Scholar
  128. 128.
    K. Papangkorn, W. I. Higuchi, S. K. Li, R. P. Kochambilli, A. L. Tuitupou, D. C. Mix, and J. W. Higuchi. Delivery of an Immunosuppressive Agent into the Rabbit Eye Using the Visulex® Ocular Iontophoresis Device, Invest Ophthalmol Vis Sci. 48:E-Abstract 5818 (2007).Google Scholar
  129. 129.
    Eljarrat-Binstock E, Raiskup F, Frucht-Pery J, Domb AJ. Hydrogel probe for iontophoresis drug delivery to the eye. J Biomater Sci Polym Ed. 2004;15:397–413.PubMedGoogle Scholar
  130. 130.
    Grossman R, Chu DF, Lee DA. Regional ocular gentamicin levels after transcorneal and transscleral iontophoresis. Invest Ophthalmol Vis Sci. 1990;31:909–16.PubMedGoogle Scholar
  131. 131.
    Choi TB, Lee DA. Transscleral and Transcorneal Iontophoresis of Vancomycin in Rabbit Eyes. J Ocul Pharmacol. 1988;4:153–64.PubMedGoogle Scholar
  132. 132.
    Rootman DS, Jantzen JA, Gonzalez JR, Fischer MJ, Beuerman R, Hill JM. Pharmacokinetics and safety of transcorneal iontophoresis of tobramycin in the rabbit. Invest Ophthalmol Vis Sci. 1988;29:1397–401.PubMedGoogle Scholar
  133. 133.
    Hobden JA, Ocallaghan RJ, Hill JM, Reidy JJ, Rootman DS, Thompson HW. Tobramycin Iontophoresis into Corneas Infected with Drug-Resistant Pseudomonas-Aeruginosa. Curr Eye Res. 1989;8:1163–9.PubMedGoogle Scholar
  134. 134.
    Hobden JA, Reidy JJ, Ocallaghan RJ, Insler MS, Hill JM. Ciprofloxacin Iontophoresis for Aminoglycoside-Resistant Pseudomonal Keratitis. Invest Ophthalmol Vis Sci. 1990;31:1940–4.PubMedGoogle Scholar
  135. 135.
    Barza M, Peckman C, Baum J. Transscleral Iontophoresis as an Adjunctive Treatment for Experimental Endophthalmitis. Arch Ophthalmol. 1987;105:1418–20.PubMedGoogle Scholar
  136. 136.
    Chapon P, Voigt M, Gautier S, Behar-Cohen F, O'grady G, Parel JM. Intraocular tissues pharmacokinetics of ganciclovir transscleral Coulomb controlled iontophoresis in rabbits. Invest Ophthalmol Vis Sci. 1999;40:S189–9.Google Scholar
  137. 137.
    Kralinger MT, Voigt M, Kieselbach GF, Hamasaki D, Hayden BC, Parel JM. Ocular delivery of acetylsalicylic acid by repetitive Coulomb-controlled iontophoresis. Ophthalmic Res. 2003;35:102–10.PubMedGoogle Scholar
  138. 138.
    Sarraf D, Equi RA, Holland GN, Yoshizumi MO, Lee DA. Transscleral Iontophoresis of Foscarnet. Am J Ophthalmol. 1993;115:748–54.PubMedGoogle Scholar
  139. 139.
    Voigt M, Kralinger M, Kieselbach G, Chapon P, Anagnoste S, Hayden B, et al. Ocular aspirin distribution: A comparison of intravenous, topical, and coulomb-controlled iontophoresis administration. Invest Ophthalmol Vis Sci. 2002;43:3299–306.PubMedGoogle Scholar
  140. 140.
    Souied EH, Reid SNM, Piri NI, Lerner LE, Nusinowitz S, Farber DB. Non-invasive gene transfer by iontophoresis for therapy of an inherited retinal degeneration. Experimental Eye Research. 2008;87:168–75.PubMedGoogle Scholar
  141. 141.
    Erlanger G. Iontophoresis, a scientific and practical tool in ophthalmology. Ophthalmologica. 1954;128:232–46.PubMedCrossRefGoogle Scholar
  142. 142.
    Hughes L, Maurice DM. A fresh look at iontophoresis. Arch Ophthalmol. 1984;102:1825–9.PubMedGoogle Scholar
  143. 143.
    Barza M, Peckman C, Baum J. Transscleral Iontophoresis of Gentamicin in Monkeys. Invest Ophthalmol Vis Sci. 1987;28:1033–6.PubMedGoogle Scholar
  144. 144.
    Lam TT, Fu J, Tso MOM. A Histopathologic Study of Retinal Lesions Inflicted by Transscleral Iontophoresis. Graefes Arch Clin Exp Ophthalmol. 1991;229:389–94.PubMedGoogle Scholar
  145. 145.
    Yoshizumi MO, Lee DA, Sarraf DA, Equi RA, Verdon W. Ocular Toxicity of Iontophoretic Foscarnet in Rabbits. J Ocul Pharmacol Ther. 1995;11:183–9.PubMedGoogle Scholar
  146. 146.
    Chauvaud D, Behar-Cohen FF, Parel JM, Renard G. Transscleral Iontophoresis of cortcicosteoids: Phase II clinical trial. Invest Ophthalmol Vis Sci. 2000;41:S79–9.Google Scholar
  147. 147.
    Halhal M, Renard G, Bejjani RA, Behar-Cohen F. Corneal graft rejection and corticoid iontophoresis: 3 case reports. J Fr Ophtalmol. 2003;26:391–5.PubMedGoogle Scholar
  148. 148.
    Behar-Cohen FF, Halhal M, Benezra D, Chauvaud D, Renard G. Reversal of corneal graft rejection by iontophoresis of methylprednisolone. Invest Ophthalmol Vis Sci. 2002;43:U504–4.Google Scholar
  149. 149.
    Halhal M, Renard G, Courtois Y, Benezra D, Behar-Cohen F. Iontophoresis: from the lab to the bed side. Exp Eye Res. 2004;78:751–7.PubMedGoogle Scholar
  150. 150.
    Burstein NL, Leopold IH, Bernacchi DB. Trans-scleral iontophoresis of gentamicin. J Ocul Pharmacol. 1985;1:363–8.PubMedGoogle Scholar
  151. 151.
    Yoshizumi MO, Roca JA, Lee DA, Lee G, Gomez I. Ocular lontophoretic supplementation of intravenous foscarnet therapy. Am J Ophthalmol. 1996;122:86–90.PubMedGoogle Scholar
  152. 152.
    A. L. Tuitupou, W. I. Higuchi, S. K. Li, D. J. Miller, R. P. Kochambilli, J. W. Higuchi, K. Papangkorn, and D. C. Mix. Enhanced transscleral delivery of dexamethasone phosphate with a vasoconstrictor in the treatment of uveitis in a rabbit model, Invest Ophthalmol Vis Sci. 48:E-Abstract 5821 (2007).Google Scholar
  153. 153.
    Horwath-Winter J, Schmut O, Haller-Schober EM, Gruber A, Rieger G. Iodide iontophoresis as a treatment for dry eye syndrome. Br J Ophthalmol. 2005;89:40–4.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Esther Eljarrat-Binstock
    • 1
  • Jacob Pe’er
    • 2
  • Abraham J. Domb
    • 1
  1. 1.Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of OphthalmologyHadassah-Hebrew University Medical CenterJerusalemIsrael

Personalised recommendations