Pharmaceutical Research

, Volume 27, Issue 5, pp 735–738 | Cite as

Drug Delivery Systems for Intraperitoneal Therapy



Disorders associated with the peritoneal cavity include peritoneal adhesions and intraperitoneal (IP) malignancies. To prevent peritoneal adhesions, physical barrier devices are used to prevent organs from contacting other structures in the abdomen and forming adhesions, or pharmacological agents that interfere with adhesion formation are administered intraperitoneally. IP malignancies are other disorders confined to the peritoneal cavity, which are treated by combination of surgical removal and chemotherapy of the residual tumor. IP drug delivery helps in the regional therapy of these disorders by providing relatively high concentration and longer half-life of a drug in the peritoneal cavity. Various studies suggest that IP delivery of anti-neoplastic agents is a promising approach for malignancies in the peritoneal cavity compared to the systemic administration. However, IP drug delivery faces several challenges, such as premature clearance of a small molecular weight drug from the peritoneal cavity, lack of target specificity, and poor drug penetration into the target tissues. Previous studies have proposed the use of micro/nanoparticles and/or hydrogel-based systems for prolonging the drug residence time in the peritoneal cavity. This commentary discusses the currently used IP drug delivery systems either clinically or experimentally and the remaining challenges in IP drug delivery for future development.


hydrogels intraperitoneal drug delivery intraperitoneal malignancies micro/nanoparticles peritoneal adhesion 



This study was supported by a grant from the Lilly Endowment, Inc. to the School of Pharmacy and Pharmaceutical Sciences, Purdue University, and the NIH R21 CA135130.


  1. 1.
    Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Recent advances in prevention and management. Dig Surg. 2001;18:260–73.CrossRefPubMedGoogle Scholar
  2. 2.
    Tingstedt B, Andersson E, Isaksson K, Andersson R. Clinical impact of abdominal adhesions: what is the magnitude of the problem? Scand J Gastroenterol. 2008;43:255–61.CrossRefPubMedGoogle Scholar
  3. 3.
    Davies JM, O’Neil B. Peritoneal carcinomatosis of gastrointestinal origin: natural history and treatment options. Expert Opin Investig Drugs. 2009;18:913–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Sadeghi B, Arvieux C, Glehen O, Beaujard AC, Rivoire M, Baulieux J, et al. Peritoneal carcinomatosis from non-gynecologic malignancies. Cancer 2000;88:358–63.CrossRefPubMedGoogle Scholar
  5. 5.
    Drecoll E, Gaertner FC, Miederer M, Blechert B, Vallon M, Muller JM, et al. Treatment of peritoneal carcinomatosis by targeted delivery of the radio-labeled tumor homing peptide bi-DTPA-[F3]2 into the nucleus of tumor cells. PLoS ONE. 2009;4:e5715.CrossRefPubMedGoogle Scholar
  6. 6.
    Akahira JI, Yoshikawa H, Shimizu Y, Tsunematsu R, Hirakawa T, Kuramoto H, et al. Prognostic factors of stage IV epithelial ovarian cancer: a multicenter retrospective study. Gynecol Oncol. 2001;81:398–403.CrossRefPubMedGoogle Scholar
  7. 7.
    Curtin JP, Malik R, Venkatraman ES, Barakat RR, Hoskins WJ. Stage IV ovarian cancer: impact of surgical debulking. Gynecol Oncol. 1997;64:9–12.CrossRefPubMedGoogle Scholar
  8. 8.
    DiZerega GS. Use of adhesion prevention barriers in pelvic reconstructive and gynecologic surgery. In: diZerega GS, editor. Peritoneal surgery. New York: Springer; 2000.Google Scholar
  9. 9.
    Yeo Y, Kohane DS. Polymers in the prevention of peritoneal adhesions. Eur J Pharm Biopharm. 2008;68:57–66.CrossRefPubMedGoogle Scholar
  10. 10.
    Yeo Y, Adil M, Bellas E, Astashkina A, Chaudhary N, Kohane DS. Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. J Control Release. 2007;120:178–85.CrossRefPubMedGoogle Scholar
  11. 11.
    Yeo Y, Bellas E, Highley CB, Langer R, Kohane DS. Peritoneal adhesion prevention with an in situ cross-linkable hyaluronan gel containing tissue-type plasminogen activator in a rabbit repeated-injury model. Biomaterials 2007;28:3704–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Alberts DS, Liu PY, Hannigan EV, O’Toole R, Williams SD, Young JA, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med. 1996;335:1950–5.CrossRefPubMedGoogle Scholar
  13. 13.
    McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996;334:1–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2003;21:3194–200.CrossRefPubMedGoogle Scholar
  15. 15.
    Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354:34–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Gadducci A, Carnino F, Chiara S, Brunetti I, Tanganelli L, Romanini A, et al. Intraperitoneal versus intravenous cisplatin in combination with intravenous cyclophosphamide and epidoxorubicin in optimally cytoreduced advanced epithelial ovarian cancer: a randomized trial of the Gruppo Oncologico Nord-Ovest. Gynecol Oncol. 2000;76:157–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Markman M, Bundy BN, Alberts DS, Fowler JM, Clark-Pearson DL, Carson LF, et al. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol. 2001;19:1001–7.PubMedGoogle Scholar
  18. 18.
    Polyzos A, Tsavaris N, Kosmas C, Giannikos L, Katsikas M, Kalahanis N, et al. A comparative study of intraperitoneal carboplatin versus intravenous carboplatin with intravenous cyclophosphamide in both arms as initial chemotherapy for stage III ovarian cancer. Oncology 1999;56:291–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Yen MS, Juang CM, Lai CR, Chao GC, Ng HT, Yuan CC. Intraperitoneal cisplatin-based chemotherapy vs. intravenous cisplatin-based chemotherapy for stage III optimally cytoreduced epithelial ovarian cancer. Int J Gynaecol Obstet. 2001;72:55–60.CrossRefPubMedGoogle Scholar
  20. 20.
    Glockzin G, Schlitt HJ, Piso P. Peritoneal carcinomatosis: patients selection, perioperative complications and quality of life related to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. World J Surg Oncol. 2009;7:5.CrossRefPubMedGoogle Scholar
  21. 21.
    Gonzalez-Moreno S, Ortega-Perez G, Gonzalez-Bayon L. Indications and patient selection for cytoreductive surgery and perioperative intraperitoneal chemotherapy. J Surg Oncol. 2009;100:287–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Nissan A, Stojadinovic A, Garofalo A, Esquivel J, Piso P. Evidence-based medicine in the treatment of peritoneal carcinomatosis: past, present, and future. J Surg Oncol. 2009;100:335–44.CrossRefPubMedGoogle Scholar
  23. 23.
    Dedrick RL, Myers CE, Bungay PM, DeVita Jr VT. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep. 1978;62:1–11.PubMedGoogle Scholar
  24. 24.
    Markman M. Intraperitoneal drug delivery of antineoplastics. Drugs 2001;61:1057–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Markman M, Rowinsky E, Hakes T, Reichman B, Jones W, Lewis Jr JL, et al. Phase I trial of intraperitoneal taxol: a Gynecoloic Oncology Group study. J Clin Oncol. 1992;10:1485–91.PubMedGoogle Scholar
  26. 26.
    NCI clinical announcement for Intraperitoneal chemotherapy for ovarian cancer
  27. 27.
    Poveda AA, Salazar RR, del Campo JJM, Mendiola CC, Cassinello JJ, Ojeda BB, et al. Update in the management of ovarian and cervical carcinoma. Clin Transl Oncol. 2007;9:443–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Hirano K, Hunt CA. Lymphatic transport of liposome-encapsulated agents: effects of liposome size following intraperitoneal administration. J Pharm Sci. 1985;74:915–21.CrossRefPubMedGoogle Scholar
  29. 29.
    Lukas G, Brindle SD, Greengard P. The route of absorption of intraperitoneally administered compounds. J Pharmacol Exp Ther. 1971;178:562–4.PubMedGoogle Scholar
  30. 30.
    Mohamed F, Marchettini P, Stuart OA, Sugarbaker PH. Pharmacokinetics and tissue distribution of intraperitoneal paclitaxel with different carrier solutions. Cancer Chemother Pharmacol. 2003;52:405–10.CrossRefPubMedGoogle Scholar
  31. 31.
    Mohamed F, Stuart OA, Sugarbaker PH. Pharmacokinetics and tissue distribution of intraperitoneal docetaxel with different carrier solutions. J Surg Res. 2003;113:114–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Tsai M, Lu Z, Wang J, Yeh T-K, Wientjes M, Au J. Effects of carrier on disposition and antitumor activity of intraperitoneal paclitaxel. Pharm Res. 2007;24:1691–701.CrossRefPubMedGoogle Scholar
  33. 33.
    Lu Z, Tsai M, Lu D, Wang J, Wientjes MG, Au JL. Tumor-penetrating microparticles for intraperitoneal therapy of ovarian cancer. J Pharmacol Exp Ther. 2008;327:673–82.CrossRefPubMedGoogle Scholar
  34. 34.
    Yeo Y, Ito T, Bellas E, Highley CB, Marini R, Kohane DS. In situ cross-linkable hyaluronan hydrogels containing polymeric nanoparticles for preventing postsurgical adhesions. Ann Surg. 2007;245:819–24.CrossRefPubMedGoogle Scholar
  35. 35.
    Gelderblom H, Verweij J, van Zomeren DM, Buijs D, Ouwens L, Nooter K, et al. Influence of cremophor El on the bioavailability of intraperitoneal paclitaxel. Clin Cancer Res. 2002;8:1237–41.PubMedGoogle Scholar
  36. 36.
    Knemeyer I, Wientjes MG, Au JL. Cremophor reduces paclitaxel penetration into bladder wall during intravesical treatment. Cancer Chemother Pharmacol. 1999;44:241–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL, et al. Hypersensitivity reactions from taxol. J Clin Oncol. 1990;8:1263–8.PubMedGoogle Scholar
  38. 38.
    Kohane DS, Tse JY, Yeo Y, Padera R, Shubina M, Langer R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Materi Res Part A. 2006;77A:351–61.CrossRefGoogle Scholar
  39. 39.
    Tamura T, Imai J, Matsumoto A, Tanimoto M, Suzuki A, Horikiri Y, et al. Organ distribution of cisplatin after intraperitoneal administration of cisplatin-loaded microspheres. Eur J Pharm Biopharm. 2002;54:1–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Huang YH, Zugates GT, Peng W, Holtz D, Dunton C, Green JJ, et al. Nanoparticle-delivered suicide gene therapy effectively reduces ovarian tumor burden in mice. Cancer Res. 2009;69:6184–91.CrossRefPubMedGoogle Scholar
  41. 41.
    Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res. 2007;74:72–84.CrossRefPubMedGoogle Scholar
  42. 42.
    Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev. 2001;46:149–68.CrossRefPubMedGoogle Scholar
  43. 43.
    Bennis S, Chapey C, Robert J, Couvreur P. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur J Cancer. 1994;30:89–93.CrossRefGoogle Scholar
  44. 44.
    Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res. 2000;6:1949–57.PubMedGoogle Scholar
  45. 45.
    Michieli M, Damiani D, Ermacora A, Masolini P, Michelutti A, Michelutti T, et al. Liposome-encapsulated daunorubicin for PGP-related multidrug resistance. Br J Haematol. 1999;106:92–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Rahman A, Husain SR, Siddiqui J, Verma M, Agresti M, Center M, et al. Liposome-mediated modulation of multidrug resistance in human HL-60 leukemia cells. J Natl Cancer Inst. 1992;84:1909–15.CrossRefPubMedGoogle Scholar
  47. 47.
    Sadava D, Coleman A, Kane SF. Liposomal daunorubicin overcomes drug resistance in human breast, ovarian and lung carcinoma cells. J Liposome Res. 2002;12:301–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Industrial and Physical PharmacySchool of Pharmacy and Pharmaceutical Sciences, Purdue UniversityWest LafayetteUSA
  2. 2.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations